30th International Conference on Thermoelectrics ICT 2011 July 17-21, 2011, Traverse City, MI, USA

Time	Su	nday	Monday	Tuesday	Wednesday	Thursday
	Ju	y 17	July 18	July 19	July 20	July 21
730-800			Registration/	Registration/	Registration/	Registration/
800-830			Breakfast	Breakfast	Breakfast	Breakfast
830-900				5 11 1 G	D 11 1 G	D
900-930			Plenary Session	Parallel Sessions	Parallel Sessions	Parallel Sessions
930-1000	Arriv	val and				
1000-1030	Che	ck-In	Coffee	Coffee	Coffee	Coffee
1030-1100				5 11 1 G	D 11 1 G	
1100-1130			Parallel Sessions	Parallel Sessions	Parallel Sessions	Awards Session
1130-1200						
1200-1230						
1230-1300			Lunch	Lunch	Lunch	Lunch
1300-1330						
1330-1400						
1400-1430			Parallel Sessions	Parallel Sessions	Parallel Sessions	Parallel Sessions
1430-1500	Conference					
1500-1530	Registration	Board	Coffee	Coffee	Coffee	Farewell
1530-1600	(Governor's	Meeting				
1600-1630	Prefunction)	(Northwoods)	Parallel Sessions	Parallel Sessions	Parallel Sessions	
1630-1700						Golf Outing
1700-1730						-
1730-1800					Board Meeting	
1800-1830			Poster Session/	Buses Depart		
1830-1900			Reception			
1900-1930	We	come		Museum/Beach	Banquet	
1930-2000	Rec	eption			Dunquet	
2000-2030	(Outdoo	r Pavilion)				
2030-2100						
2100-2130						
2130-2200						

30th International Conference on Thermoelectrics (ICT 2011) July 17-21, 2011 Grand Traverse Resort Traverse City, Michigan USA

Scientific Program

Monday Morning 8:30-10:00

	Governor's D Opening/Plenary Session	
	Opening/Welcome	
8:30-9:00	Donald Morelli, ICT 2011 Conference Chair Dr. Leo Kempel, Associate Dean of Research, Michigan State Univ. Tino Breithaupt, Traverse City Area Chamber of Commerce/ Michigan Economic Development Corporation Thierry Caillat, President, International Thermoelectric Society	
9:00-9:45	Plenary Talk	
	Dr. Altaf Carim, US Department of Energy and White House Office of Science and Technology Policy Facing our Energy Challenges in a New Era of Science	
	In Memoriam	
9:45-10:00	Norbert Elsner, Hylan Lyon, and Eugeniy Iordanishvili Konstantinovich	

10:00-10:30 Coffee Break, Governor's pre-function area

Monday Morning 10:30-12:00				
	SESSION A SESSION B SESSION C			
	Governor's C Session M1: Novel Concepts Chair: Joseph Heremans	Governor's D Session M2: Bi ₂ Te ₃ I: Bulk Nanostructured Chair: Thifeng Ren	Mackinac Room Session M3: Generators I Chair: Lasse Rosendahl	
10:30-10:45	M1.1 J.L. Cohn, et al. <i>Giant</i> bipolar Nernst effect in a quasi-one dimensional metal	M2.1 R.J. Mehta, et al. <i>High</i> figure of merit n- and p-type bulk thermoelectric materials from directed synthesis and assembly of sculpted pnictogen chalcogenide nanocrystals	M3.1 J.D. Koenig, et al. Development of a thermoelectric generator based on chalcogenides for space applications	
10:45-11:00		M2.2 J.S. Dyck, et al. Thermoelectric properties of chemically-synthesized Bi ₂ . _x Sb _x Te ₃ nanocrystalline materials	M3.2 JA. Paik, et al. Component life tests for segmented thermoelectric couples	
11:00-11:15	M1.2 J.P. Heremans, et al. <i>The</i> spin-Seebeck effect in GaMnAs	M2.3 U. Pelz, et al. An aqueous chemistry approach to nano- bismuth telluride	M3.3 S. Krishnan, et al. <i>Progress</i> towards an optimization methodology for combustion driven portable thermoelectric power generation systems	
11:15-11:30	M1.3 Bo Yu, et al. Modulation doping in three-dimensional bulk nanocomposites	M2.4 CH. Yeh, et al. Spark plasma sintering synthesized nanostructured $(Bi,Sb)_2Te_3$ alloys through the mixture of binary compounds Sb_2Te_3 and Bi_2Te_3	M3.4 D.T. Crane, et al. Validating steady-state and transient modeling tools for high power density thermoelectric generators	
11:30-11:45	M1.4 JH. Bahk, et al. Thermoelectric power factor enhancement through miniband- conduction in III-V semiconductor superlattices at low temperatures	M2.5 J.B. Beck et al. Explosive shock wave consolidation of nanostructured bismuth telluride	M3.5 J.S. Sakamoto, et al. Skutterudite-based thermoelectric technology for waste heat recovery: progress towards a 1kW generator	
11:45-12:00	M1.5 C.F. Gallo, et al. <i>Highly</i> anisotropic materials for improved thermoelectric and/or magnetothermoelectric performance	M2.6 K.H. Lee, et al. Enhancement of thermoelectric figure of merit for $Bi_{0.5}Sb_{1.5}Te_3$ by metal nanoparticle decoration		

12:00-13:30 Lunch, Governor's AB

	SESSION A	SESSION B	SESSION C
	Governor's C Session M4: Oxides I Chair: Kunihito Koumoto	Governor's D Session M5: Skutterudites I Chair: Clirad Uber	Mackinac Room Session M6: Device Performance
	Chur . Kunnuo Koumoto	Chair. Chrua Oner	Chuir. Tim Hogan
13:30-13:45	M4.1 M. Backhaus-Ricoult Evaluation of titanium oxide based materials for thermoelectric power generation	M5.1 M. Kaviany, Structural order-disorder transitions and phonon conductivity of partially filled skutterudites	M6.1 R. Funahashi, et al Power generation of silicide modules for middle temperature range application
13:45-14:00	M4.2 C. Liu Et al., Preparation and properties of some misfit-structured thermoelectric oxides		M6.2 K. Miyazaki et al Printed thermoelectric thick film for a thermoelectric generator
14:00-14:15	M4.3 T. Sparks, et al. Electrical and thermal transport properties of strongly-correlated $LiMn_2O_4$ and Co_3O_4 spinels	M5.2 C. Zhou, et al. <i>High</i> <i>temperature thermoelectric</i> <i>properties of Yb-filled</i> <i>skutterudite nanocomposites</i> <i>with antimonide nanoinclusions</i>	M6.3 T. Nemoto, et al. <i>Power</i> generation characteristics of Mg ₂ Si uni-leg thermoelectric generator
14:15-14:30	M4.4 A. Sakai, et al. Systematic investigation of thermoelectricity in $Sr_nNb_nO_{3n+2}$	M5.3 X. Su, et al. Microstructure and thermoelectric transport properties of CoSb _{2.75} Ge _{0.25-x} Te _x prepared by rapid solidification	M6.4 G. Fraisse, et al. Accuracy comparison of whole thermoelectric leg models
14:30-14:45	M4.5 F.P. Zhang, et al. Preparation, characterization, and high temperature transport properties of Fe- doped $Ca_{1-x}Fe_xMnO_{3+d}$ $(0 \le d \le 0.14)$ oxides	M5.4 S. Humer, et al. <i>From</i> superconductivity towards thermoelectricity: LaPtGe _{12-x} Sb _x	M6.5 L. Chen, <i>High</i> <i>performance skutterudite</i> <i>thermoelectric device: efficiency</i> <i>and service behavior</i>
14:45-15:00	M4.6 F. Li and JF. Li, <i>Effect</i> of sol-gel coating on thermoelectric performance of Ni-doped LaCoO ₃ ceramics	M5.5 X. Li, et al. Effect of lead on thermoelectric performance of $Yb_yCo_4Sb_{12}$	

Monday Afternoon 13:30-15:00

15:00-15:30 Coffee Break, Governor's pre-function area

	SESSION A	SESSION B	SESSION C
	Governor's C Session M7: Zintl Compounds Chair: Jim Salvador	Governor's D Session M8: Full and Half-Heusler Chair: Terry Tritt	Mackinac Room Session M9: Characterization I: Mechanical Chair: E.D. Case
15:30-15:45	M7.1 E. Toberer, et al. Ca ₃ AlSb ₃ : an inexpensive, non-toxic thermoelectric material for waste heat recovery	M8.1 X. Yan, et al. Improved ZT in both p- and n-type half- Heuslers	M9.1 E.D. Case, Thermal fatigue and waste heat recovery via thermoelectrics
15:45-16:00	M7.2 A. Zevalkink et al. Improved carrier concentration control in Zn doped Ca ₅ Al ₂ Sb ₆	M8.2 G. Joshi, et al. Enhancement in thermoelectric figure of merit of n-type half-Heuslers	
16:00-16:15	M7.3 C. Uvarov, et al. Enhanced high- temperature thermoelectric performance of Yb _{14-x} Ca _x MnSb ₁₁	M8.3 P. Poudeu, et al. Atomic-scale structural engineering approach to half-Heusler nanocomposites with drastically enhanced figure of merit	M9.2 R.D Schmidt, et al. Powder processing and mechanical characterization of lower cost or lead-free thermoelectric materials
16:15-16:30	M7.4 K. Star, et al. Synthesis and thermoelectric properties of Yb ₁₄ MnSb ₁₁ derivatives	M8.4 D. Do, et al. Electronic structure and thermoelectric properties of iron-based full Heusler pseudo-gap system $Fe_2NA [(N,A) = (V, Al) and$ (Ti, Sn)]	M9.3 J.E. Ni, et al. Limited bloating in $(Pb_{0.95}Sn_{0.05})_{0.92}(PbS)_{0.08}$ - $0.055\%PbI_2$ specimens as a result of processing conditions
16:30-16:45	M7.5 S. Wang, et al. Enhancement in thermoelectric performance by in-situ nanostructures and minute Cd -doping in β - Zn_4Sb_3	M8.5 A. Nishide, et al. <i>High</i> thermoelectric power factor of Heusler Fe ₂ VAl thin films with lattice strain	M9.4 V. Ravi et al Mechanical properties and thermomechanical modeling of thermoelectric materials and couples
16:45-17:00	M7.6 JP. Fleurial, et al. The search for practical next generation high temperature thermoelectric materials	M8.6 D. Wee, et al. Quasi- harmonic vibrational properties of TiNiSn from ab- initio phonons	M9.5 S. Firdosy, et al. Flexural properties of selected thermoelectric materials
17:00-17:15	M7.7 J. Nesbitt, et al. Thin coatings for sublimation suppression for $Yb_{14}MnSb_{11}$ thermoelectric material for space power applications	M8.7 HH. Xie, et al. Effects of Ti substitution on the thermoelectric properties of $Hf_{0.6}Zr_{0.4}NiSn_{0.98}Sb_{0.02}$ half- Heusler alloys by levitation melting and SPS	M9.6 J.M. Ma et al., Characterization of the mechanical properties of $La_{3-x}Te_4$

Monday Afternoon 15:30-17:15

18:15-20:15 Poster Session, Governor's EF

Tuesday Morning 8:15-10:00			
	SESSION A	SESSION B	SESSION C
	Governor's C	Governor's D	Mackinac Room
	Session T1:	Session T2:	Session T3:
	Novel Materials I	Skutterudites II	Automotive I
8.15 8.20	Chair: Holger Kleinke	Lidong Chen	Chair: H. Schock
0.15-0.50			<i>Thermoelectric systems impact</i> on cars and trucks
8:30-8:45	T1.1 T. Mori, et al. Doping into voids and framework of boron cluster compounds	T2.1 Puneet, et al. Effect of In incorporation on the thermoelectric properties of CeFe _{3.5} Ni _{0.5} Sb ₁₂	T3.2 G.P. Meisner, Thermoelectric generator prototypes for waste heat recovery from automotive exhaust gas
8:45-9:00	T1.2 H. Sun and D.T. Morelli <i>Thermoelectric</i> properties of Co ₁ . _x Rh _x Si _{0.98} B _{0.02} alloys	T2.2 J.Y. Cho, et al. Thermoelectric properties of p-type skutterudites $Yb_xFe_{3.5}Ni_{0.5}Sb_{12}$ (0.8 $\leq x \leq 1$)	T3.3 P. Chen and M. Soulliere System level modeling of thermoelectric generators for automotive applications
9:00-9:15	T1.3 M. Wagner, et al. Defect and substitution variants of RuIn ₃ – novel thermoelectrics	T2.3 P.F. Qiu, et al. <i>High</i> temperature electrical and thermal transport properties of fully filled skutterudites RFe_4Sb_{12} ($R = Ca, Sr, Ba, La,$ Ce, Pr, Nd, Eu, and Yb)	T3.4 J. Kitte, et al. Thermoelectrics in the vehicle – challenges from the ideal process to integrated concept
9:15-9:30	T1.4 Y. Takagiwa et al. Thermoelectric properties of polygrained FeGa ₃ -type intermetallic compounds Ru(Ga,In) ₃	T2.4 R. Liu, et al. High performance p-type skutterudites: the effect of Ni- doping and dual-filling	
9:30-9:45	T1.5 S. Zhu, et al. Optimizing the thermoelectric properties of polycrystalline In_4Se_3 by the in-situ formation of InSb nanoinclusions	T2.5 Q. Jie, et al. Improvements on thermoelectric properties and thermal stability of Nd-filled p- type skutterudites	T3.5 L.A. Rosendahl, et al. <i>A</i> novel application for thermoelectric generation: brake pads as an energy source
9:45-10:00	T1.6 J.Y. Yang, et al. Thermoelectric properties of polycrystalline In ₄ Se _{3-x} fabricated by mechanical alloying and hot pressing	T2.6 P. Wei, et al. Rapid preparation and thermoelectric properties of (Ba,In) double-filled skutterudites with unique nanostructures	T3.6 D. Tatarinov et al. Optimized characterization of thermoelectric generators for the application in automotives

10:00-10:30 Coffee Break, Governor's pre-function area

	SESSION A	SESSION B	SESSION C
	Governor's C Session T4: Theory I Chair: Wenqing Zhang	Governor's D Session T5: Bi ₂ Te ₃ II: Bulk Chair: H. Scherrer	Mackinac Room Session T6: Characterization II: Thermoelectric Chair: Neil Dilley
10:30-10:45	T4.1 B. Kozinsky Decoupling and predicting thermoelectric effects using computation: thermal and electronic transport	T5.1 D.L. Medlin, et al. Atomistic studies of grain boundary structure in bismuth telluride	T6.1 S. Iwanaga and G.J. Snyder <i>The scanning Seebeck</i> <i>coefficient measurement</i> <i>system for quality control of</i> <i>bulk and thin film</i> <i>thermoelectric materials</i>
10:45-11:00		T5.2 C. Schumacher, et al Highly crystalline and perfectly stoichiometric bismuth antimony telluride compounds by pulsed electrochemical deposition technique and annealing	T6.2 Y.G. Yan, et al. Combinatorial approach on thermoelectric materials using a temperature dependent screening tool
11:00-11:15	T4.2 MS. Lee and S.D. Mahanti Validity of rigid band approximation in studying thermoelectric properties	T5.3 C.M. Jaworski, and J.P. Heremans, <i>Porous tetradymite</i> <i>bismuth based chalcogenides</i> <i>with high figure of merit</i>	T6.3 P. Garrity Direct measurement of absolute thermoelectric coefficients through electronic fluctuations
11:15-11:30	T4.3 D. Parker, et al. Doping dependence of thermoelectric performance in Mo ₃ Sb ₇ : first principles calculations	T5.4 S.Q. Yang, et al. The fabrication of high thermoelectric performance p-type $Bi_{0.5}Sb_{1.5}Te_3$ crystals using gradient freeze	T6.4 S. Lee, et al Characterization of electron transport in $Bi_2Te_{2.7}Se_{0.3}$ nanocomposite using the method of four coefficients
11:30-11:45	T4.4 K. Kutorasinski et al Calculations of electronic structure and transport coefficients in disordered half-Heusler alloys using KKR-CPA method	T5.5 CH Yeh et al. Optimization of anti-site defects interaction by extra Te content on (Bi-Sb) ₂ Te ₃ thermoelectric materials	T6.5 M. Schmidt et al. Zero- field thermopower and thermal conductivity of a thin heterostructure membrane with a 2D electron gas
11:45-12:00	T4.5 E. Flage-Larsen, et al. The Lorenz function; its scattering properties and the validity of the parabolic approximation	T5.6 JJ. Shen, et al. Thermoelectric properties of textured bismuth telluride based polycrystalline thermoelectric alloys prepared by spark plasma sintering	T6.6 J. Chase, et al. Measurement techniques for characterizing specific contact resistance of ohmic contacts between thermoelectric materials and metallization layers

Tuesday Morning 10:30-12:00

12:00-13:30 Lunch, Governor's AB

	SESSION A	SESSION B	SESSION C
	Governor's C Session T7: Nanoscale/Low Dimension Chair: Kevin Pipe	Governor's D Session T8: Novel Materials II Chair: Yuri Grin	Mackinac Room Session T9: Generators II Chair: Terry Hendricks
13:30-13:45	T7.1 K. Zhang et al Temperature dependent thermoelectric properties of HgCdTe superlattices	T8.1 F. Gascoin, et al. CdI ₂ type layered structure as potential thermoelectric materials: example of the ACrSe ₂ system	T9.1 K. Settaluri et al <i>Thin</i> thermoelectric generator system for body energy harvesting
13:45-14:00	T7.2 R.B. Sadeghian et al Calculation of nonlinear thermoelectric coefficients of $InAs_{1-x}Sb_x$ using Monte Carlo method		T9.2 D. Samson, et al. Flight test results of a thermoelectric energy harvester for aircraft
14:00-14:15	T7.3 R. Vidu, et al. Fabrication of doped CoSb ₃ nanowires for high temperature thermoelectric materials	T8.2 E.J. Skoug, et al. Thermoelectric properties of the Cu ₃ SbSe ₄ -Cu ₃ SbS ₄ solid solution	T9.3 N.R. Kristiansen, et al. Waste heat recovery from a marine waste incinerator
14:15-14:30	T7.4 K. Miyazaki et al Enhanced figure of merit of a nano-porous thin film	T8.3 D. Do et al. <i>Electronic</i> structure and thermoelectric properties of Cu ₃ SbSe ₄	T9.4 P.V. Mortensen and A.A. Enkeshafi <i>A novel application</i> for thermoelectric generators: residential combined heat and power
14:30-14:45	T7.5 N. Neophytou, et al. Thermoelectric power factor of narrow silicon nanowires from atomistic considerations	T8.4 J. Salvador, et al. Microstructural investigation and thermoelectric properties of Cu/Ge/Se based diamond- like semiconductors	T9.5 C. Suter and A. Steinfeld A 1kWel thermoelectric stack for geothermal power generation – modeling and geometrical optimization
14:45-15:00	T7.6 M. Murata et al. Four- wire resistance measurements on bismuth nanowire encased in quartz template utilizing focused ion beam processing	T8.5 L. Xi, et al. <i>Cu-Se bond</i> network and thermoelectric performance of copper- containing compounds with diamond-like structure	T9.6 T. Thompson, et al., Integrating aerogel into space and terrestrial thermoelectric generator technology

Tuesday Afternoon 13:30-15:00

15:00-15:30 Coffee Break, Governor's pre-function area

Tuesday Aft	ernoon 15:30-17:15
--------------------	--------------------

	SESSION A	SESSION B	SESSION C
	Governor's C Session T10: Magnesium Silicide Chair: Mark Soulliere	Governor's D Session T11: PbTe/AgSbTe ₂ /LAST Chair: J. Snyder	Mackinac Room Session T12: Thin Film Devices Chair: H. Böttner
15:30-15:45	T10.1 Z. Bian et al. Thermoelectric transport modeling of Mg ₂ Si with embedded nanoparticles	T11.1 M.D. Nielsen, et al. Thermal conductivity of NaSbTe ₂ , AgSbTe ₂ , and their alloys: experimental results	T12.1 J. Nurnus, <i>Micropelt's</i> thin film thermoelectric generators: technology, devices, and applications
15:45-16:00	T10.2 W. Liu et al. Cooperative control of the electrical and thermal transport properties of Mg ₂ Si _{1-x-v} Sn _x Sb _v by optimizing Sn/Si ratio combined with Sb doping	T11.2 Y. Chen et al. Transport properties of $(Ag_{1-y}SbTe_{2+z})_{1-x}(SnTe)_x$ solid solutions	
16:00-16:15	T10.3 N. Satyala and Daryoosh Vashaee Modeling of thermoelectric properties of nanostructured magnesium silicide (Mg ₂ Si)compounds	T11.3 M. Kanatzidis Nanoscience of advanced bulk thermoelectrics	T12.2 D.H. Lee, et al. Thermoelectric devices based on bulk nanostructured silicon phononic crystals and nanowires
16:15-16:30	T10.4 S.K. Bux, et al. Mechanochemical synthesis and thermoelectric properties of magnesium silicide		T12.3 T. Nishino and T. Suzuki Fabrication and characterization of flexible thermoelectric devices using metal-filled via films
16:30-16:45	T10.5 T. Yi et al. Enhancement of thermoelectric efficiency of Mg_2Si with Si nanocomposites	T11.4 J. Yang, et al. <i>Microstructure, nucleation,</i> <i>and electronic band structure</i> <i>modulation in</i> $AgPb_mSbTe_{2+m}$ - <i>type nanocomposites</i>	T12.4 M. Mizoshiri et al., Thin-film thermoelectric modules for power generation using focused light
16:45-17:00	T10.6 H. Zhiming, et al. Preparation of $Mg_2Si_{0.4-x}Sb_xSn_{0.6}$ by induction melting and spark plasma sintering, and thermoelectric properties	T11.5 J. Dadda, et al. The influence of annealing on nano/microstructures and thermoelectric properties of AgPb ₁₈ SbTe ₂₀ compounds	T12.5 R. Rostek, et al. Fabrication and optimization of Bi_2Te_3 and $(Bi_3Sb)_2Te_3$ microstructures for thermoelectric energy harvesting applications
17:00-17:15	T10.7 H.L. Gao et al. <i>Flux</i> synthesis and thermoelectric properties of eco-friendly Sb doped Mg ₂ (Si,Sn) solid solutions	T11.6 Z. Yu et al. Synthesis and thermoelectric properties of LAST system bulk materials: substitution of VIB- group elements for tellurium	T12.6 A. Yamamoto et al. The effects of thermoelectric film thickness on the performance of in-plane thermoelectric modules

18:15-18:45 Bus Departures for Excursions, Hotel Lobby/Entrance

	SESSION A	SESSION B	SESSION C
	Governor's C	Governor's D	Mackinac Room
	Session W1:	Session W2:	Session W3:
	Oxides II	Bi ₂ Te ₃ III: Low	Automotive II
	Chair: M. Backhaus-Ricoult	Dimensional	Chair: Gregory Meisner
		Chair Jean-Pierre Fleurial	
8:15-8:30		W2.1 N. Peranio et al. Single- crystalline, stoichiometric Bi_2Te_3 nanowires for transport in the basal plane	W3.1 L.I. Anatychuk and R.V. Kuz, <i>Materials for automotive</i> <i>thermoelectric generators</i>
8:30-8:45	W1.1 D. Berardan, et al. Thermoelectric properties of ZnO-based oxides revisited	W2.2 M.P. Siegal, et al. Independently controlling composition and structure in Bi ₂ (Te _{1-x} Se _x)3 nanowires to improve thermoelectric properties	W3.2 C. Maranville, Thermoelectric generator prototypes for waste heat recovery from automotive exhaust gas
8:45-9:00	W1.2 Y. Ba, et al. Nanostructured oxide thermoelectric materials Nd _{2/3-x} Li _{3x} TiO ₃ with low thermal conductivity	W2.3 G. Wang et al. Structure analysis of Sb ₂ Te ₃ film on (0001) sapphire	
9:00-9:15	W1.3 B. Dabrowski and S. Kolesnik, <i>Exploration of</i> <i>transition metal perovskites</i> <i>for enhanced thermopower</i>	W2.4 Z. Aabdin, et al. Sb_2Te_3 and Bi_2Te_3 thick films grown by room temperature MBE	W3.3 L. Goenka and C. Maranville System-level considerations for automotive thermoelectric HVAC
9:15-9:30	W1.4 N.Van Nong et al. Heavy ions doping coupled with metallic nanoinclusions: and effective way to improve the thermoelectric performance of p-type layered cobalt oxide materials	W2.5 D. Banga et al. Synthesis of Bi ₂ Te ₃ /Sb ₂ Te ₃ superlattice electrodeposits via electrodeposition	W3.4 T. Okuma et al. A novel application of thermoelectric modules to HVAC system under cold climate operation
9:30-9:45	W1.5 R.J. Mehta, et al. Doped zinc oxide nanocrystal assemblies for thermoelectric waste heat scavenging	W2.6 M. Winkler et al. Sputtered n-type soft superlattices based on bi2Te3/(Bi,Sb)2Te3 created by nanoalloying	W3.5 H. Schock, Prospects for implementation of thermoelectric generators as waste heat recovery systems in class 8 truck applications
9:45-10:00	W1.6 M. Ohtaki, et al. Thermoelectric properties of ZnO with multinary doping	W2.7 A. Peng, et al. Synthesis and characterization of $Bi_{2-x}Sb_xTe_3$ quantum dots and their thermoelectric properties	W3.6 J. Fairbanks, Automotive thermoelectric generators and air conditioner/heaters

Wednesday Morning 8:15-10:00

10:00-10:30 Coffee Break, Governor's pre-function area

	SESSION A	SESSION B	SESSION C
	Governor's C Session W4: Micro/nanostructural Effects Chair: Akram Boukai	Governor's D Session W5: Skutterudites III Chair: Jihui Yang	Mackinac Room Session W6: Device Design/Fabrication I Chair: Ryoji Funahashi
10:30-10:45	W4.1 K. Nielsch Overview: German priority program on "Nanostructured Thermoelectric Materials"	W5.1 X. Tang Melt spinning- spark plasma sintering\: a novel approach to prepare high thermoelectric performance nanocomposties	W6.1 D. Wesolowski et al <i>A</i> high temperature, high vacuum compatible Bi ₂ Te ₃ -based thermoelectric module
10:45-11:00	W4.2 J. He et al. Probing the thermodynamics and microstructures of p-Bi ₂ Te ₃ thermoelectric nanocomposites: a neutron scattering study		W6.2 J. D'Angelo, et al. Fabrication and characterization of half- Heusler and skutterudite thermoelectric power generation devices for waste heat recovery
11:00-11:15	W4.3 I. Blum et al. <i>Atom-</i> probe tomography of PbTe- based nanostructured thermoelectric materials	W5.2 G. Rogl et al. <i>High</i> pressure torsion (HPT): a new route to high ZTs?	W6.3 HW. Lee The advance of thermoelectric generation technology in Korea
11:15-11:30	W4.4 T. Ikeda et al. Nanostructure control and lattice thermal conductivities of PbTe-based materials	W5.3 S.R. Sarath Kumar et al. Thermoelectric properties of single phase In _{0.2} Yb _{0.2} Co ₄ Sb ₁₂ thin films	
11:30-11:45	W4.5 J.L. Lensch-Falk et al Characterization of electrodeposited nano- crystalline Sb ₂ Te ₃ films	W5.4 K. Biswas et al. Thermal cycling effects on the thermoelectric properties of n- type In, Ce based skutterudite compounds	W6.4 SM. Choi et al. A power generation test for oxide-based thermoelectric modules using p-type $Ca_3Co_4O_9$ and n-type $Ca_{0.9}Nd_{0.1}MnO_3$ legs
11:45-12:00	W4.6 J.H. Hyung We, et al. Evaluation of thermal conductivity of thin film thermoelectric materials prepared by screen printing technique	W5.5 H. Li, et al. Microstructure and phase transition of melt-spun $Yb_{0.2}Co_4Sb_{12}$ compound during pre-annealing process	W6.5 J. Guo et al Development of skutterudite thermoelectric materials and modules

Wednesday Morning 10:30-12:00

12:00-13:30 Lunch, Governor's AB

Wednesday Afternoon 13:30-15:00			
	SESSION A SESSION B SESSION C		
	Governor's C Session W7: Novel Materials III: Organic	Governor's D Session W8: More Silicides and Heuslers	Mackinac Room Session W9: Device Design/Fabrication II
	Chair: Stephanie Brock	Chair: Ferdinand Poudeu	Chair: Jeff Sakamoto
13:30-13:45	W7.1 GH. Kim, et al. Thermoelectric measurements of pentacene thin films	W8.1 F. Dynys, et al. Thermoelectric materials for aeronautical power generation	W9.1 T. Caillat et al Advanced high temperature thermoelectric materials and components
13:45-14:00	W7.2 A. Chamoire, et al. Organic based semiconductor as thermoelectric material	W8.2 V. Ponnambalam, et al. Nowotny chimney-ladder structure compounds a potential thermoelectrics	W9.2 T. Hogan, et al. <i>PECS</i> processed thermoelectric materials and modules
14:00-14:15	W7.3 N. Toshima et al, Organic thermoelectric materials composed of conducting polymers and metal nanoparticles	W8.3 J. Higgins et al. Synthesis and thermoelectric properties of nanowires and bulk nanostructured manganese silicide (MnSi _{1.75})	W9.3 C. Caylor, et al. <i>High</i> <i>performance thermoelectric</i> <i>cooling modules based on</i> <i>advanced bulk</i> <i>nanosctructured materials</i>
14:15-14:30	W7.4 N. Gothard et al. Quasi-one dimensional doped phthalocyanines for thermoelectric applications	W8.4 A. Pokhrel et al. Synthesis of bulk nanostructured higher manganese silicides for thermoelect,ric applications	W9.4 J. Trujillo et al. Metal- matrix nanocomposites with tailored coefficients of thermal expansion (CTE) for improved thermomechanical reliability of thermoelectric devices
14:30-14:45	W7.5 Y. Du, et al. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites	W8.5 M. Schwall, et al. <i>Phase</i> separation in Heusler compounds with C1b structure	W9.5 D. Madan, et al. <i>Printed</i> Se-doped n-type Bi ₂ Te ₃ thick film thermoelectric generators
14:45-15:00	W7.6 M.H. Check, et al. Synthesis and characterization of fulleride materials	W8.6 J. Shiomi et al. Lattice thermal conductivity of half- Heusler compounds from first principle calculations	W9.6 S.L. Li et al Thermomechanical analysis of a thermoelectric module

15:00-15:30 Coffee Break, Governor's pre-function area

Wednesday Afternoon 15:30-17:15			
	SESSION A	SESSION B	SESSION C
	Governor's C	Governor's D	Mackinac Room
	Session W10:	Session W11:	Session W12:
	Clathrate	Bi ₂ Te ₃ IV: More Bulk	Characterization III:
	Compounds	Nanostructured	Thermal
	Chair: Peter Rogl	Chair: Jeff Dyck	Chair: Hsin Wang
15:30-15:45	W10.1 D. Thompson et al. Thermoelectric properties of type I clathrates $(Sr_8Ni_xGa_{14-x}Ge_{31})$	W11.1 W. Xie, et al. <i>High</i> <i>performance</i> (<i>Bi</i> , <i>Sb</i>) ₂ <i>Te</i> ₃ <i>nanocomposite rapidly</i> <i>prepared by single element</i> <i>melt spinning combined with</i> <i>spark plasma sintering</i>	W12.1 H. Böttner et al., Transport properties of bulk thermoelectrics: report on recent international round- robin efforts
15:45-16:00	W10.2 Z. Ye et al. Synthesis and thermoelectric properties of Au-substituted type I clathrates	W11.2 W.S. Liu et al. Nanostructured thermoelectric materials $Cu_xBi_2(Te,Se,S)_3$	W12.2 G. Pernot et al. Thermal conductivity of thin films TbAs:InGAs measured using time domain thermoreflectance
16:00-16:15	W10.3 Y. Grin Atomic interactions and thermoelectric activity of intermetallic compounds	W11.3 S. Sumithra et al. Effect of NiTe nanoinclusions on thermoelectric properties of Bi ₂ Te ₃	W12.3 Y. Zhang et al. Profiling local thermoelectric properties by a novel scanning thermal microscopy
16:15-16:30		W11.4 R.P. Gupta et al. Thermoelectric materials made from inorganic colloidal nanocrystals	W12.4 D. Cederkrantz, et al. A comparison between the laser flash method and the transient plane source technique for thermal conductivity measurements
16:30-16:45	W10.4 P. Rogl Clathrate type I thermoelectrics: $Ba_8M_xVacancy_y{Ge,Si}_{46-x-y}$ barium versus strontium compounds	W11.5 C. Kim et al., Synthesis of BiTe-type nanoparticles and study on their transport properties for ZT enhancement	W12.5 R. McCarty et al., Methodology for minimizing losses for Harman technique at high temperatures
16:45-17:00	W10.5 X. Yan, et al. Thermoelectric properties of type-I clathrates in the quaternary system Ba-Cu- Si-Ge	W11.6 SS. Lin, et al. Effect of electric current stressing on thermoelectric properties of Bi-Se-Te based nanostructure materials prepared by powder metallurgy	W12.6 H. Lo and R.J. Ram, Sub-micron mapping thermal conductivity of thermoelectric thin films
17:00-17:15			W12.7 R.P. Bhatta et al. Thermal conductivity of platinum and lead telluride microwires at 725 K by 3ω method

19:00-21:30 Banquet, Governor's ABCD

Thursday Morning 8:15-10:00			
	SESSION A	SESSION B	SESSION C
	Governor's C	Governor's D	Mackinac Room
	Session H1:	Session H2:	Session H3:
	Novel Materials IV	PbTe-Based	Generators III
	Chair: Thierry Caillat	Chair: Vladimir Jovovic	Chair: Lon Bell
8:15-8:30	H1.1 D. Moore et al. [(PbSe) _{1.16}] _m (TiSe ₂) _n ferecrystals: interwoven semiconductors with designed nanoarchitecture and tunable properties	H2.1 Jovovic et al. <i>High</i> <i>performing PbTe-based</i> <i>thermoelectric materials</i>	H3.1 B. Poudel et al. Solar thermoelectric generators: electrical and thermal power cogeneration
8:30-8:45		H2.2 J. Androulakis et al. Interband scattering in p-type K and Na co-doped PbTe: the importance of a heavy effective mass	H3.2 L. Miao et al. Feasibility study on solar thermal power generation system by thermoelectric module installed at evacuated tubular collector with trough concentrator
8:45-9:00	H1.2 M. Ohta, et al. Thermoelectric properties of misfit layer sulfides (LnS) _x CrS ₂ (Ln:La, Pr, Nd, Gd) prepared by CS ₂ sulfurization	H2.3 S. Girard et al. Shape- controlled nanostructures and band structure engineering in PbTe-PbS thermoelectric materials doped with Na	H3.3 A. Moser, et al. Thermoelectric harvesting from transient ambient temperature gradients
9:00-9:15	H1.3 C. Wan et al <i>TiS</i> ₂ - based organic/inorganic superlattice as a thermoelectric material	H2.4 G.J. Snyder <i>PbTe: better than we thought</i>	H3.4 A. Rezania and L.A. Rosendahl <i>A new</i> configuration of the microchannels to reduce cooling power loss through heat sink
9:15-9:30	H1.4 M. Beekman, et al. Synthesis, structure, and electrical transport properties of [(SnSe) _{1.04}] _m [MoSe ₂] _n nanostructured intergrowths		H3.5 Y. Sasaki et al. Fluid directions on heat exchange in thermoelectric generator
9:30-9:45	H1.5 M. Zhou et al. Thermoelectric properties of Ni-intercalated TiSe _{1.8} S _{0.2}	H2.5 Y. Pei and G.J. Snyder High performance thermoelectric PbTe due to band structure complexity and nanostructures	H3.6 K. Mizuno et al. Development of a thermal buffering device to cope with temperature fluctuations for a thermoelectric power generator
9:45-10:00	H1.6 E. Guilmeau et al. Thermoelectric properties of layered $Cu_x TiS_2$ compounds	H2.6 CI. Wu, et al. <i>Lead</i> selenide based thermoelectric materials	H3.7 C. Lertsatitthanakorn et al Performance study of a double pass thermoelectric solar air collector with flat plate reflectors

10:00-10:30 Coffee Break, Governor's pre-function area

Thursday Morning 10:30-12:00

	Governor's D Plenary Awards Session Chair: Donald Morelli
10:30-11:15	Young Investigator Award Talk Dr. Eric Toberer Colorado School of Mines The Rise of Thermoelectric Zintl Compounds
11:15-12:00	Outstanding Achievement in Thermoelectrics Award Talk Dr. Glen Slack Illinois Institute of Technology Thermoelectric Properties of Bulk Materials – A History

12:00-13:30 Lunch, Governor's AB

Thursday Afternoon 13:30-15:00			
	SESSION A	SESSION B	SESSION C
	Governor's C Session H4: Theory II Chair: Bhanu Mahanti	Governor's D Session H5: Various Antimonides and Tellurides Chair: Jeff Sharp	Michigan CD Session H6: Characterization IV/Synthesis Chair: Edgar Lara-Curzio
13:30-13:45	H4.1 T. Takeuchi Condition of electronic structure for practical thermoelectric materials	H5.1 N. Ghafouri et al <i>Effect</i> of substrates on co-evaporated Bi_2Te_3 and Sb_2Te_3 thin films	H6.1 P. Majsztrik et al. The effect of creep deformation on the microstructure and electrical resistivity of bismuth telluride
13:45-14:00		H5.2 H. Takahashi et al. <i>High-mobility transport of FeSb</i> ₂ <i>with ppm-level carrier</i> <i>concentration</i>	H6.2 D. Vasilevsky et al. Thermoelectric and mechanical properties of novel hot extruded PbTe n-type material
14:00-14:15	H4.2 S. Barabash et al. Phonon softening and low thermal conductivity in cubic I-V-VI semiconductors	H5.3 N. Nandihalli et al. Thermoelectric property tuning via formation of nanocomposites based on Mo ₃ Sb _{5.4} Te _{1.6} materials	H6.3 M. Jaegle et al Innovative characterization and optimization for thermoelectric thin films
14:15-14:30	H4.3 J.W. Doak and C. Wolverton Coherent phase stability of IV-VI rocksalt semiconductor alloys	H5.4 CK. Huang et al. Thermoelectric properties of $La_{3.x}Te_4$ -based materials synthesized by ball milling technique	
14:30-14:45	H4.4 G.S. Pomrehn et al Phase equilibria in thermoelectric zinc antimonides: a thermodynamic study from first principles	H5.5 S.J. Limmer et al. Electrochemical deposition of $Bi_2(Te,Se)_3$ nanowire arrays on silicon	H6.4 S.H. Sadat et al. Nanoscale thermometry using point contact thermocouples
14:45-15:00	H4.5 R. Yu, et al. Molecular dynamics simulation of the mechanical properties of Mg ₂ Si	H5.6 DB. Xiong, et al. Microstructures and thermoelectric properties of nanostructured Mn-doped zinc antimonides	H6.5 A. LaLonde, et al. <i>Rapid</i> consolidation of powdered materials by induction hot pressing

POSTERS

ICT Sorting Category: A1: theoretical study of bulk materials

P1. Bulk modulus and band structure of group IV and group VI doped ternary PbTe alloys by first principles Ashoka Bali and Ramesh Chandra Mallik

Thermoelectric Materials and Device Laboratory, Department of Physics, Indian Institute of Science, Bangalore, 560 012, India

P2. Search for resonant scatterers in bismuth and bismuth antimony alloys - first principles study

Bartlomiej Wiendlocha^{1,2}, Hyungyu Jin¹, Janusz Tobola², Stanislaw Kaprzyk², Joseph P. Heremans^{1,3} ¹Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210, USA; ²Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland; ³Department of Physics, Ohio State University, Columbus, Ohio 43210, USA

P3. Ab initio calculation of elastic constants and deformation potentials of CoSb₃

A. Zhou, L. S. Liu, C. C. Shu, P. C. Zhai State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China

P4. Electronic structures and transport properties of double filled CoSb₃: a theory study

Cui-Cui Shu, An Zhou, Li-Sheng Liu, and Peng-Cheng Zhai State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

P5. A close look inside the Mott relation: its validity, limitations and potential

Yibin Gao¹, G. Jeffrey Snyder², and Joseph P Heremans^{1,3} ¹Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210; ²California Institute of Technology, Pasadena, California; ³Department of Physics, Ohio State University, Columbus, Ohio 43210

P6. Thermoelectric properties of isoelectronic, highly mismatched alloys

Joo-Hyoung Lee and Jeffrey C. Grossman Department of Materials Science and Engineering, Massachusetts Institute of Technology

P7. Molecular dynamics study on bulk β-Zn₄Sb₃ mechanical properties: vacancy and temperature effects Guodong Li, Yao Li, Xuqiu Yang, An Zhou, Lisheng Liu and Pengcheng Zhai

State Key Laboratory of Advanced Technology of Materials Synthesis and Processing, Wuhan University of Technology

P8. Effect of magnetic and nonmagnetic dopants on electron transport properties in Mg₂(Si-Sn) and Mg₂(Si-Ge) from electronic structure calculations

Piotr Zwolenski, Janusz Tobola and Stanislaw Kaprzyk Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland

ICT Sorting Category: A2: nanoscale and low-dimension induced effects

P9. Unstructured-grid-based MC simulations of phonon transport at nanoscale Mei-Jiau Huang Mechanical Engineering Department, National Taiwan University

P10. Large enhancement of the thermoelectric figure of merit in a nanostructured quantum well Avto Tavkhelidze

Tbilisi State University, Chavchavadze Avenue 13, Tbilisi 0179, Georgia

P11. Thermoelectric effects on micro- and nano-scale

S.V. Ordin and W.N. Wang

¹Physico-Technical Institute of A.F. Ioffe of the Russian Academy of Sciences. St. Petersburg, ²Bath University, Great Britain

P12. MonteCarlo study of the strained Si/Si_xGe_{1-x} superlattice with the ballistic electron transport and the phonon-phonon scatterings algorithms

Sangho Kim

Department of Electrical and Computer Engineering, University of Wisconsin at Madison

P13. Transport-coefficient dependence of current-induced cooling effect in a two-dimensional electron gas Naomi Hirayama¹, Akira Endo², Kazuhiro Fujita², Yasuhiro Hasegawa³, Naomichi Hatano¹, Hiroaki Nakamura⁴, Ryōen Shirasaki⁵ and Kenji Yonemitsu⁶

¹IIS, U. Tokyo, ²ISSP, U. Tokyo, ³Saitama U., ⁴NIFS, ⁵Yokohama National U., ⁶IMS

P14. Influence of ZnO inclusions on the transport properties of CoSb₃

C. Chubilleau¹, B. Lenoir¹, P. Masschelein¹, A. Dauscher¹, C. Godart²

¹Institut Jean Lamour, UMR 7198, UMR 7198 CNRS - Nancy-Université - UPV-Metz, Département Chimie et Physique des Solides et des Surfaces, Ecole Nationale Supérieure des Mines de Nancy, Parc de Saurupt, F-54042 NANCY Cedex, France, ²ICMPE- CMTR, CNRS-UMR 7182, 2-8, rue H. Dunant, 94320 THIAIS, France

P15. Switching effect in transverse thermopower in Bi microwires

L. A. Konopko^{1,2}, T. E. Huber³ and A. A. Nikolaeva^{1,2}

¹Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028, Moldova; ²International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421, Poland; ³Howard University, 500 College St. N.W., Washington, DC 20059, USA

P16. Electrical resistance in PbTe quantum wires

Sitangshu Bhattacharya¹ and Ramesh Chandra Mallik²

¹Nanoscale Device Research Laboratory, Center for Electronics Design and Technology, Indian Institute of Science, Bangalore, 560 012, India; ²Thermoelectric Materials and Device Laboratory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India

P17. Overcoming the challenges of non-uniform electrochemical currents to control compositional uniformity during the synthesis of $Bi_{1,y}Sb_{y}$ nanowire arrays

W. G. Yelton¹, S. J. Limmer¹, M.P. Siegal¹, D. L. Medlin², J. L. Lensch-Falk², and D. L. Overmyer¹ ¹Sandia National Laboratories, Albuquergue, NM; ²Sandia National Laboratories, Livermore, CA

ICT Sorting Category: A3: novel concepts and related physical phenomenon

P18. Narrow "d"and "f" band metals for improved thermoelectric and/or magnetothermoelectric performance C. F. Gallo, Jason Wozniak and Brian Seaver

Superconix, Inc.

P19. Thermomagnetic effect in the quantum hall system Ryōen Shirasaki^T, Akira Endo², Naomichi Hatano³, and Hiroaki Nakamura⁴ ¹Yokohama National U., ²ISSP, U. Tokyo, ³IIS, U. Tokyo, ⁴NIFS

P20. Giant electrocaloric effect in ferroelectric polymers and their applications for high efficiency cooling devices

Q. M. Zhang¹, S. G. Lu¹, Xinyu Li¹, Haiming Gu¹, Minren Lin¹, Xiaoshi Qian¹, J. P. Cheng¹, Ailen Cheng², Greg Nellis³, and Brent Craven⁴

¹Electrical Engineering Department and Materials Research Institute, The Pennsylvania State University ²Strategic Polymer Sciences Inc. State College, PA

³Department of Mechanical Engineering, University of Wisconsin, Madison

⁴Applied Research Laboratory, The Pennsylvania State University and

Electrical Engineering Department and Materials Research Institute

The Pennsylvania State University

ICT Sorting Category: B1: skutterudites

P21. The role of $FeSb_2$ and $NbSb_2$ in the stability of $Mm_{0.86}Fe_{3.5}Co_{0.5}Sb_{12}$ skutterudites

L. Zhang, D. Morelli and J. Sakamoto Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824

P22. High-temperature stability of thermoelectric skutterudite In_{0.25}Co₃FeSb₁₂

Kwan-Ho Park and Il-Ho Kim Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, 50 Daehangno, Chungju, Chungbuk 380-702, Korea

P23. Structural and electrical properties of thermoelectric CoSb3 thin films with different composition and thickness

M. Daniel, C. Brombacher, G. Beddies, and M. Albrecht Institute of Physics, Chemnitz University of Technology, D-09107, Germany

P24. Low thermal conductivity and enhanced thermoelectric performance in the $Ca_{0.5}Ce_{0.5}Fe_{4-x}Ni_xSb_{12}$ skutterudites

Gangjian Tan, Han Li, Yonggao Yan, Xinfeng Tang State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 40070, China

P25. Ab initio study of p-type IFe_4Sb_{12} (I = Na, K, Ca, Sr, Ba, La, Ce, Pr, and Yb)

J. Yang, P. Qiu, R. Liu, L. Xi, W. Zhang, and L. Chen State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences

P26. Residual strength degradation model for low cycle fatigue of CoSb₃ Skutterudites compounds

Zhong-wei Ruan¹, Li-sheng-Liu², Peng-cheng Zhai², Peng-fei Wen¹, and Qing-jie Zhang² ¹Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China; ²State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

P27. Effect of In impurity on thermoelectric properties of Ba and In double-filled skutterudite materials Xuan Yang, Wenyu Zhao, Ping Wei, Jian Yu, Hua Zhou and Qingjie Zhang

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

P28. Effect of addition of alumina nanoparticles on thermoelectric properties of La-filled skutterudite CoSb₃ compounds

Masaki Matsuhara¹ and Takashi Itoh²

¹Department of Materials Science and Engineering, Nagoya University

²EcoTopia Science Institute, Nagoya University

P29. Thermoelectric properties of trisubstituted skutterudite Co4Sb11Ge1-x-yTexSey compounds

Bo Duan, PengCheng Zhai, LiSheng Liu State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

P30. Effect of Excessive Sb on Thermoelectric Properties of p-Type Ba and In Double-filled Iron-based Skutterudite Materials

Jian Yu, Wenyu Zhao, Ping Wei, Hua Zhou and Qingjie Zhang State key laboratory of advanced technology for materials synthesis and processing, Wuhan University of Technology

P31. Development of highly efficient n-type skutterudites

G Rogl^{1,2}, A Grytsiv¹, N Melnychenko-Koblynk¹, E Bauer² and P Rogl¹ ¹Institute of Physical Chemistry, University of Vienna, ²Institute of Solid State Physics, University of Technology, Wien, Austria

ICT Sorting Category: B2: oxides

P32. Textured thermoelectric oxides prepared by rapid sintering

J. Khaliq¹, H. Yan¹, K. Simpson2, M.J. Reece¹

¹School of Engineering and Materials Science, and Nanoforce Technology Limited, Queen Mary University of London, Mile End Road, London, E1 4NS, UK; ²European Thermodynamics, 8 Priory Business Park, Kibworth, Leicester LE8 0RX, UK.

P33. Improved thermoelectric properties of $Ca_{0.98}RE_{0.02}MnO_{3-d}$ (RE = Sm, Gd and Dy)

Chia-Jyi Liu, Ankam Bhaskar and J. J. Yuan Department of Physics, National Changhua University of Education, Changhua 500, Taiwan

P34. Microstructural analysis and high temperature thermoelectric properties of Fe-, Zr-, and Ba-doped calcium cobaltite (CCO-349) thin films

Ryan D. Snyder¹, Evan L. Thomas², Xueyan Song³, Betty T. Quinton¹, Song Chen³, Steven M. Goodrich⁴, Mary L. Galaska⁴, Winnie Wong-Ng⁵ and Paul N. Barnes⁶

¹Air Force Research Laboratory/RZPG, WPAFB, 2645 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7919; ²University of Dayton Research Institute/Air Force Research Laboratory-WPAFB, Metals and Ceramics Division, 300 College Park, Dayton, OH 45469-0073; ³Department of Mechanical and Aerospace Engineering, West Virginia University, Engineering Sciences Bldg. Room 537, Evansdale Dr., Morgantown, WV 26506-6106; ⁴University of Dayton Research Institute, Metals and Ceramics Division, 300 College Park, Dayton, OH 45469; ⁵National Institute of Standards and Technology, Ceramics Division, 100 Bureau Dr. MS 8520, Gaithersburg, MD 20899-5820; ⁶Army Research Laboratory, Power Components, 2800 Powder Mill Rd., Adelphi, MD 20783

P35. Exfoliation of thermoelectric cobalt oxide by soft chemical method

J.Y. Kim, J.I. Kim, and W.S. Seo Korea Institute of Ceramic Engineering and Technology

P36. Thermoelectric properties of electron-doped SrMnO₃ single crystal with cubic perovskite structure T. Suzuki¹, H. Sakai¹, Y. Taguchi^{1,2}, and Y. Tokura^{1,2,3,4} ¹CMRG RIKEN, ²CERG RIKEN, ³Univ. of Tokyo, ⁴ERATO-MF

P37. Improvement of electrical contact between TE material and Ni electrode interface by application of a buffer layer

Koya Arai¹, Masanori Matsubara¹, Tatsuya Sakamoto¹, Tohru Kineri², Yasuo Kogo¹, Tsutomu Iida¹ and Keishi Nishio¹

¹Department of Material Science and Technology, Tokyo University of Science; ²Department of Applied Chemistry, Tokyo University of Science, Yamaguchi

P38. The fabrication of high performance polycrystalline $Ca_3Co_4O_9$ using conventional sintering process

O-Jong Kwon¹, Wook Jo², Jae-Yeol Kim¹, Hyunwoo Yoo^{1,3}, Jin-Sang Kim³, Kyeongdal Choi⁴, Chan Park¹ ¹Seoul National University, ²Technische Universität Darmstadt; ³Korea Institute of Science and Technology; ⁴Korea Polytechnic University

P39. Thermoelectric and electrical properties of $Li_{0.5-x}Zn_xRh_2O_4$

Yuuta Nakamura and Hiroshi Irie Univ. of Yamanashi

P40. Synthesis and growth mechanism of single-phase SrTiO₃ nanocubes for thermoelectric materials

Nam-Hee Park¹, Yifeng Wang¹, Chunlei Wan^{7,2} and Kunihito Koumoto^{1,2} ¹Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan; ²CREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan

P41. Microstructure and thermoelectric properties of misfit-layered cobalt oxides with metallic nanoinclusions prepared by a printing technique

Ngo Van Nong, Alfred Junio Samson, Nini Pryds and Søren Linderoth Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Denmark Technical University, 4000 Roskilde, Denmark

P42. Microstructures and thermoelectric properties of sintered Ca₃Co₄O₉-based oxide

Takao Morimura, Masayuki Hasaka, Shin-ichiro Kondo, Hiromichi Nakashima Graduate School of Engineering, Nagasaki University

P43. Transport and thermoelectric properties LCuO-Sr polycrystalline ceramics

J. E. Rodríguez Department of Physics, Universidad Nacional de Colombia

P44. Thermoelectric properties of Niobium doped Strontium Titanate thin films

S.R. Sarath Kumar, and H.N. Alshareef King Abdullah University of Science and Technology

ICT Sorting Category: B3: silicides & Heusler compounds

P45. Solid-state synthesis and thermoelectric properties of Al-doped Mg₂Si

Hyung Jin Lee¹, Yong Rae Cho¹, Sin-Wook You² and Il-Ho Kim² ¹SK Lubricants Technology Center, Daejon, Korea ²Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, Chungju, Korea

P46. Synthesis of bulk nanostructured higher manganese silicides for thermoelectric applications

Ankit Pokhrel¹, Jeremy Higgins¹, Annie Weathers², Arden L. Moore², Li Shi,^{2, 3} and Song Jin¹ ¹Department of Chemistry, University of Wisconsin – Madison

² Department of Mechanical Engineering, The University of Texas at Austin

³Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin

P47. The effects of heavy element substitution on electric structure and lattice thermal conductivity of Fe_2VAl thermoelectric material

Yuichi Terazawa¹, Masashi Mikami², Tsunehiro Takeuchi^{1, 3} ¹Department of Crystalline Materials Science, Nagoya University

²National Institute of Advanced Industrial Science and Technology, Materials Research Institute for Sustainable Development, Nagoya

³EcoTopia Science Institute, Nagoya University

P48. The study on thermoelectric performance in $Mg_2Si_{0.5}Ge_{0.5}$ by Sb, La co-doping

Xiaoyuan Zhou¹, Guoyu Wang¹, Xianli Su^{1,3}, Hang Chi¹, James R. Salvador², Wei Liu³, Xinfeng Tang³ and Ctirad Uher¹

¹Department of Physics, University of Michigan

²Chemical Sciences and Materials Systems Laboratory, GM Global Research

³State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

P49. Thermoelectric properties of Sn-based half-Heusler nanocomposites

Dexuan Huo, Luobing Liao, Shaopeng Cui, Weitao Su, and Lingwei Li Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou, China

P50. Improved thermoelectric properties of higher manganese silicide $Mn_{1-x}Re_xSi_{1.80}$ by doping Re on Mn site

Wenhui Luo, Wenjie Xie, Fan Fu, Xinfeng Tang State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology

P51. Cold-pressing synthesis and thermoelectric properties of higher manganese silicides for waste heat recovery Xi Chen, Jianshi Zhou, Li Shi

Texas Materials Institute, the University of Texas at Austin

P52. Doping effects on figure of merits in a Mg₂Sn System

Soon-Mok Choi¹, Il-Ho Kim², Sun-Uk Kim³, Won-Seon Seo¹, Tae-Ho An^{1,4}, and Chan Park⁴ ¹Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology (KICET), Seoul, Republic of Korea

²Department of Material Science and Engineering, Chung-ju National University, Chung-buk, Republic of Korea ³Functional Materials Research Department, Research Institute of Industrial Science and Technology (RIST), Pohang, Republic of Korea

⁴School of Materials Science and Engineering, Seoul National University, Republic of Korea

P53. The use of transition metal silicides to reduce the contact resistance between the electrode and sintered n-type Mg₂Si

T. Sakamoto, T. Iida, Y. Honda, M. Tada, T. Sekiguchi, K. Nishio, Y. Kogo, and Y. Takanashi Department of Materials Science and Technology, Tokyo University of Science

P54. Effects of Ru substitution for Mn in the Si₂Ti-type Al-Mn-Si alloy

Akio Yamamoto¹, Tsunehiro Takeuchi^{1,2} ¹Department of Crystalline Materials Science, Nagoya University ²EcoTopia Science Institute, Nagoya University

P55. Development of Higher Manganese Silicide for Thermoelectric Applications

Y. Sadia and Y. Gelbstein Ben Gurion University of the Negev, Israel

P56. Thermoelectric Properties of Mg₂Si Based Compounds Synthesized Using Magnesium Alloy

Kento Hagio¹ and Takashi Itoh² ¹Department of Materials Science and Engineering, Nagoya University ²EcoTopia Science Institute, Nagoya University

P57. Thermoelectric properties of off-stoichiometric Ti-Ni-Sn half-Heusler systems

Hirofumi Hazama, Masato Matsubara, Ryoji Asahi Toyota Central R&D Labs., Inc.

P58. Large Seebeck Coefficients of Protonated Titanate Nanotubes for High-Temperature Thermoelectric Conversion

L. Miao¹, S. Tanemura², R. Huang³, C.Y.Liu¹, C.M.Huang¹, and G. Xu¹

¹Key Laboratory for Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; ² Nanostructures Research Laboratory, Japan Fine Ceramics Center; ³Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University

P59. Structure and thermoelectric properties of MgAgSb

Alan J Thompson¹, Jeff W Sharp¹, Moreira Dos Santos², Melanie J Kirkham², and Claudia J Rawn² ¹Marlow Industries Inc. a subsidiary of II-VI Inc Dallas, Texas 75238, USA ²Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

P60. Effects of Ge/Cr Doping on the Thermoelectric Properties of Higher Manganese Silicides

Y. J. Shi, Q. M. Lu, X. Zhang, J. X. Zhang, G. Liu Key Lab. of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology

P61. Thermoelectric properties of $Mg_2Si_{0.5-x}(GaSb)_xSn_{0.5}$ ($0 \le x \le 0.1$)

Z. L. Du, T. J. Zhu, X. B. Zhao Univ. of Zhejiang

P62. Low-temperature Thermoelectric Properties of Fe₂VAl with Partial Cobalt Doping Chang Liu, Eric Skoug and Donald Morelli

Department of Chemical Engineering and Materials Science, Michigan State University,

ICT Sorting Category: B4: clathrates & zintl compounds

P63. Synthesis, structural characteristics, and thermoelectric properties of type I clathrates $A_8Zn_{18}As_{28}$ (A = K, *Rb, Cs) and* $Cs_8Cd_{18}As_{28}$ Hua He and Svilen Bobev Department of Chemistry and Biochemistry, University of Delaware

P64. Preparation and thermoelectric properties of BaMn_{2-x}Zn_xSb₂ Zintl compounds

H. F. Wang, K. F. Cai Tongji University, Functional Materials Research Laboratory, Shanghai, China

P65. Thermoelectric properties of type-I clathrates in the quaternary system Ba-Cu-Si-Ge

X. Yan,^{1,2} E. Bauer,¹ P. Rogl,² and S. Paschen^{1,3} ¹Institute of Solid State Physics, Vienna University of Technology ²Institute of Physical Chemistry, University of Vienna

P66. Study of host atom structures and electronic structures of Sb or Al doped Type-VIII Ba₈Ga₁₆Sn₃₀ clathrates

Yasushi Kono^{1,2}, Koji Akai³, Hiroshi Nozaki⁴, Nobuyuki Ohya¹, Takashi Taguchi¹, Shukang Deng⁵, Yuhta Saiga⁵, Toshiro Takabatake⁵, and Setsuo Yamamoto²

¹Denso Corporation Research Laboratories, Minamiyama

²Graduate School of Science and Engineering, Yamaguchi University

³Media and Information Technology Center, Yamaguchi University

⁴Toyota Central R&D Labs., Inc

⁵Department of Quantum Matter, ADSM, Hiroshima University

P67. Thermoelectric properties of Ba8Ga16Ge30 clathrate with TiO2 nanoinclusions

R. Heijl¹, D. Cederkrantz¹, M. Nygren², and A. E. C. Palmqvist¹

¹Department of Chemical and Biological Engineering, Chalmers University of Technology

²Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University

P68. Effects of host atom vacancies on electronic structure and thermoelectric properties in type-VIII Snclathrate Ba₈Ga₁₆Sn₃₀

clathrate Ba₈Ga₁₆Sn₃₀ K. Akai¹,K. Kishimoto², Y. Kono^{2,3}, T. Koyanagi² and S. Yamamoto² ¹MITC, Yamaguchi University ²Graduate School of Science and Engineering, Yamaguchi University ³Denso Corporation Research Lab

P69. Type-VIII clathrate Ba₈Ga₁₆Sn₃₀ doped with Cu: A high-performance thermoelectric material for intermediate-temperature application

Yuta Saiga¹, Shukang Deng^{1,2}, Kousuke Kajisa¹, and Toshiro Takabatake^{1,3} ¹Department of Quantum Matter, ADSM and ³IAMR, Hiroshima University ²Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunan Normal University

P70. Thermoelectric and magnetic properties of Ce Doped Yb₁₄MnSb₁₁

Jason H. Grebenkemper, Jennifer Karolewski, John H. Roudebush, Tanghong Yi, and Susan M. Kauzlarich Department of Chemistry, University of California-Davis

P71. Crystal structure, chemical bonding and thermoelectric properties of the p-type clathrate - I Ba₈Au_{5.3}Ge_{40.7}

H. Zhang^{1,2}, C. Candolfi¹, H. Borrmann¹, N. Oeschler¹, W. Schnelle¹, I. Veremchuk¹, M. Schmidt¹, U. Burkhardt¹, M. Baitinger¹, J. T. Zhao², and Yu. Grin¹ ¹Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden ²Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics

P72. Different physical properties in n/p- Ba₈Ga₁₆Ge₃₀

Jingtao Xu¹, Jiazhen Wu², Satoshi Heguri², Tanabe Yoichi¹, Gang Mu², Jun Tang³, and Katsumi Tanigaki^{1,2} ¹WPI AIMR, Tohoku University ²Department of Physics, Tohoku University ³Department of Physics, Sichuan University

ICT Sorting Category: B5: antimonides & tellurides

P73. Thermoelectric properties of $Bi_{85}Sb_{15-x}Pb_x$ prepared by high-pressure sintering

Song Chunmei¹, Fan Lilue¹, Huang Rongjin², Gong Linghui², Li Laifeng² ¹Department of Physics, Zunyi Normal College ²Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences

P74. Thermoelectric performance of p-type BiSbTe/Zn₄Sb₃ composites prepared by zone melting Ting Zhang, Jun Jiang, Qiushi Zhang, Yukun Xiao, Wei Li, and Gaojie Xu Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences

P75. Characterization of the thermoelectric properties of electrodeposited thin films of telluride compounds Yi Ma¹, Waruna Wijesekara¹, Elisabet Ahlberg², Ye Sun³, Bo Brummerstedt Iversen³, and Anders E. C. Palmqvist¹ ¹Dept. of Chemical and Biological Engineering, Chalmers University of Technology ²Dept. of Chemistry, University of Gothenburg

³Dept. of Chemistry and iNano, Aarhus University

P76. Withdrawn

P77. Improvement of ZT and mechanical strength in p- and n-type PbTe

Qinyong Zhang¹, Weishu Liu¹, Qian Zhang¹, Hui Wang¹, Bo Yu¹, Hengzhi Wang¹, Dezhi Wang¹, M. S. Dresselhaus³, Gang Chen², and Zhifeng Ren¹ ¹Department of Physics, Boston College ²Department of Mechanical Engineering, Massachusetts Institute of Technology ³Department of Physics and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

*P78. Thermopower gradient in PtSb*₂ single crystal

Martin Søndergaard, Mogens Christensen and Bo B. Iversen Centre for Energy Materials and Centre for Materials Crystallography, Department of Chemistry and iNANO, University of Aarhus

P79. Nanostructure, excitations, and thermoelectric properties of Bi₂Te₃ based nanomaterials

N. Peranio¹, O. Eibl¹, W. Töllner², D. Bessas², M. Winkler², J. König², A. Hashibon², V. Pacheco², K. Nielsch², R. Hermann², H. Böttner², C. Elsässer², and J. Schmidt² ¹Institut für Angewandte Physik, Eberhard Karls Universität Tübingen ²For affiliation see other contributions of this author

P80. Effect of nano-ZrW₂O₈ on the thermoelectric properties of Bi₈₅Sb₁₅/ZrW₂O₈ composites

Min Zhou, Zhen Chen, Xinxin Chu, and Laifeng Li The Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences

P81. Thermoelectric performance of p-type Bi-Sb-Sn materials prepared by pressureless sintering

Zhen Chen^{1, 2}, Min Zhou¹, Rongjin Huang¹, Chunmei Song³, Yuan Zhou¹ and Laifeng Li¹ ¹The Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences ²Graduate University of Chinese Academy of Sciences ³Department of Physics, Zunyi Normal College

P82. The effect of n-type Bi_2Te_3 particles synthesized by electrochemical methods on the thermoelectric properties of Bi_2Te_3 based nanocomposites

Wen-Jin Li, Way-ling Yu, Chia-Ying Yen and Hsin-Hwa Chen Industrial Technology Research Institute

P83. Thermoelectric properties of TlGdTe₂ and Tl₉GdTe₆

C. R. Sankar, S. Bangarigadu-Sanasy and H. Kleinke Department of Chemistry, University of Waterloo

P84. Reduced thermal conductivity in vacancy compounds of thermoelectric materials

Hao Yang and Donald T. Morelli Michigan State University

P85. Single crystal growth of Bi-Sb-Te thermoelectric materials by halide chemical vapor transport technique Mikio Koyano, Junya Tanaka, Koichiro Suekuni and Tomoki Ariga School of Materials Science, Japan Advanced Institute of Science and Technology

P86. Thermoelectric properties of Cd doped p-type bismuth antimony telluride films

Kwang-Chon Kim^{1,2}, Hyun woo You³, Won Chel Choi¹, Hyun Jae Kim², Jin-Sang Kim¹ ¹Electronic Materials Center, Korea Institute of Science and Technology ²School of Electrical and Electronic Engineering, Yonsei University ³Department of Materials Science and Engineering, Seoul National University

P87. Synthesis of Bi-Sb-Te thermoelectric powder by an oxide-reduction process

Gil-Geun Lee¹ and Gook-Hyun Ha² ¹Pukyong National University ²Korea Institute of Materials Science P88. Thermoelectric properties of $Bi_{0.5}Sb_{1.5}Te_3$ sintered body fabricated by mechanical milling and spark plasma sintering processes

Gil-Geun Lee¹ and Gook-Hyun Ha² ¹Pukyong National University ²Korea Institute of Materials Science

P89. Thermoelectric properties of Mn doped Cu₂SnSe₃ and Cu₃SbSe₄ compounds

Xu Lu¹ and Donald Morelli^{1, 2} ¹Department of Physics & Astronomy, Michigan State University ²Department of Chemical Engineering & Material Science, Michigan State University

P90. Thermoelectric properties of Na and K doped PbTe-PbSe

R. Korkosz¹, J. Androulakis¹, and M.G. Kanatzidis^{1,2} ¹Department of Chemistry, Northwestern University ²Materials Science Division, Argonne National Laboratory

P91. Reevaluation of $PbTe_{1-x}I_x$ as high performance n-type thermoelectric material

Aaron LaLonde, Yanzhong Pei, and Jeff Snyder California Institute of Technology

P92. The effect of annealing in controlled vapor pressure on the thermoelectric properties of rf sputtered Bi_2Te_3 film

Hyo-Jung Kim^{1,2}, Ju-Hyuk Yim^{2,3}, Won Chel Choi², Chan Park^{1,4} and Jin-Sang Kim²

¹Department of Material Science and Engineering, Seoul National University

²Electronic Materials Center, Korea Institute of Science and Technology

³School of Electrical and Engineering, Yonsei University

⁴Research Institute of Advanced Materials, Seoul National University

P93. Local structural characterization of thermoelectric LAST-m material ($AgPb_mSbTe_{2+m}$, m = 6, 10 and 18) P. Bauer Pereira^{1,2}, S. Perlt³, T. Höche³, J. Dadda⁴, E. Müller⁴, Raphaël P. Hermann^{1,2}

¹Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute

²Faculté des Sciences, Université de Liège

³Leibniz Institute of Surface Modification (IOM)

⁴Deutsches Zentrum für Luft- und Raumfahrt, Institut für Werkstoff-Forschung, Thermoelektrische Materialien und Systeme

P94. Thermoelectric characteristics of nanostructured (Bi,Sb)₂Te₃ bulks processed with nanodispersion

Y. H. Yeo, M. Y. Kim, J. Y. Choi, B. K. Yoo and T. S. Oh Department of Materials Science and Engineering, Hongik University

P95. Effects of nanopowder dispersion on thermoelectric characteristics of n-type Bi₂(Te,Se)₃ nanocomposites M. R. Noh, D. H. Park, M. Y. Kim and T. S. Oh

Department of Materials Science and Engineering, Hongik University

P96. The effects of Hg-doping on electrical properties in n-type Bi₂Te₃ films deposited by MOCVD

HyunWoo You^{1,2}, Kwang-Chon Kima3, Chan Park^{2,4}, and Jin-Sang Kima¹

¹Electronic Materials Center, Korea Institute of Science and Technology

²Department of Materials Science and Engineering, Seoul National University

³School of Electrical and Engineering, Yonsei University

⁴Research Institute of Advanced Materials, Seoul National University

P97. Thermoelectric properties of PbBi₂Te₄ bulk with nano structure

Young-Jae Lee¹, Jae-Yeol Kim¹, Ju-Hyuk Yim², O-Jong Kwon¹, Seunghyun Ahn¹, Jin-Sang Kim² and Chan Park^{1,3} ¹Department of Materials Science & Engineering, Seoul National University ²Department of Electronic Materials Center, Korea Institute of Science and Technology, ³Research Institute of Advanced Materials, Seoul National University

P98. PbTe valence band structure tuning through doping

Z.M. Gibbs¹, Y. Pei², W. A. Goddard³, G. J. Snyder² California Institute of Technology, Departments of ¹Chemical Engineering, ²Materials Science, and ³Chemistry

P99. Synthesis and thermoelectric properties of Al₂O₃-dispersed Bi₂Te₃ matrix nanocomposite powders

Kyung Tae Kim and Gook Hyun Ha Korea Institute of Materials Science

P100. Thermoelectric properties optimization of thermally co-evaporated p-type (Bi_{0.25}Sb_{0.75})₂Te₃ thin films Niloufar Ghafouri¹, Rebecca L. Peterson¹, Ctirad Uher², and Khalil Najafi¹ ¹Department of Electrical Engineering and Computer Science, University of Michigan ²Department of Physics, University of Michigan

P101. Thermoelectric properties of melt-spun Zn_xSb₃ ribbons

Masayuki Hasaka, Takao Morimura, and Hiromiti Nakashima Graduate School of Engineering, Nagasaki University

P102. Synthesis and formation of highly oriented In₂Te₃ nanostructures in bulk Bi₂Te₃

Nicholas A. Heinz¹, Teruyuki Ikeda^{2,1}, and G. Jeffrey Snyder¹ ¹California Institute of Technology ²PRESTO, Japan Science and Technology Agency

P103. Transport properties of $Bi_{1-x}Sb_x$ (x= 0.05 to 0.30) single crystals

C. F. Desai, M. P. Jani and P. H. Soni Physics Department, Faculty of Science, The M. S. University of Baroda

P104. Knoop microhardness of $Bi_{1-x}Sb_x$ (x= 0.05 to 0.30) crystals

Maunik Jani, P. H. Soni and C. F. Desai Department of Physics, Faculty of Science, The M. S. University of Baroda,

P105. Facial fabrication and thermoelectric properties of Bi₂Te₃-reduced graphene oxide nanocomposites Y.Y. Wang, K. F. Cai, X. Yao

Tongji University, Functional Materials Research Laboratory

P106. Thermoelectric properties of the segmented Bi₂Te₃/PbTe/CoSb₃ material prepared by spark plasma sintering

U. Ail¹, S. Gorsse^{1,2}, A. Largeteau¹, P. Bellanger¹, B. Chevalier¹, A. M. Umarji³, and S. Perumal³ ¹CNRS, Université de Bordeaux ; ²IPB, ENSCPB ; ³Materials Research Centre, Indian Institute of Science, Bangalore

P107. Optical band gap of $In_{0.5}Bi_{1.5}Te_3$ thin films

P. H. Soni, S. R. Bhavsar1, M.P. Jani and C. F. Desai Physics Department, Faculty of Science, The M. S. University of Baroda

P108. AgPb_mSbTe_{22.5} (m=17-23.5) nanostructured materials with enhanced thermoelectric performance Zong-Yue Li, Jing-Feng Li State Key Laboratory of New Ceramics and Fine Processing Department of Materials Science and Enginee

State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University

P109. Moved to oral session

P110. Sputtered p-type $Sb_2Te_3/(Bi,Sb)_2Te_3$ soft superlattices created by nanoalloying M. Winkler¹, D. Ebling¹, H. Böttner¹, L. Kirste²

¹Fraunhofer-Institute for Physical Measurement Techniques IPM, Thermoelectric Systems ²Fraunhofer-Institute for Applied Solid State Physics IAF

P111. Fabrication process of thermoelectric thick-film using bismuth telluride based nanopowders

Kyung Tae Kim and Gook Hyun Ha Korea Institute of Materials Science

P112. Direct fabrication process and thermoelectric properties of bismuth telluride based powders using byproducts of cu refining process

Gook Hyun Ha¹, Kyung Tae Kim¹, Kyong Ju Kim², Gil Geun Lee² ¹Korea Institute of Materials Science; ²Pukyong National University

P113. Heavily doped p type PbSe with high thermoelectric performance: an alternative of PbTe Heng Wang, Yanzhong Pei, Aaron D. LaLonde and G. Jeffrey Snyder Department of Materials Science, California Institute of Technology

ICT Sorting Category: B6: novel materials

P114. Thermoelectric Properties of Ce_{1-x}Sc_xPd₃

Stephen Boona and Donald Morelli Department of Chemical Engineering & Materials Science Michigan State University

P115. Cryogenic thermoelectric properties of the bismuth-lithium system

Christine M. Orovets, Audrey M. Chamoire, Hyungyu Jin, and Joseph P. Heremans Department of Mechanical and Aeronautical Engineering, The Ohio State University

P116. Preparation and thermoelectric properties of Sn-subsitituted LAST via the route of MA-PAS and MA-HP

J. Wu, J. Y. Yang, J. S. Zhang, G. Li,S. L. Feng, M. Liu, J. Y. Peng, and Q. Z. Liu State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology

P117. Thermoelectric properties of indium-ion-implanted epitaxial GaAs M.V. Warren¹, A.W. Wood², J.C. Canniff¹, F. Naab³, C. Uher², and R.S. Goldman^{1,2} ¹Department of Materials Science and Engineering, University of Michigan ²Department of Physics, University of Michigan

³Department of Nuclear Engineering and Radiological Sciences, University of Michigan

P118. Thermoelectric properties of heavily hole doped PbSe

Yeseul Lee¹, John Androulakis¹, Duck-Young Chung², and Mercouri Kanatzidis^{1,2} ¹Department of Chemistry, Northwestern University ²Materials Science Division, Argonne National Laboratory

P119. Te-alloyed In₄Se₃ and its thermoelectric properties

Mahn Jeong^{1,2}, Young Soo Lim¹, Won-Seon Seo¹, and Jong-Heun. Lee² ¹Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology ²Department of Materials Science and Engineering, Korea University

P120. Thermoelectric properties of selenospinel $Cu_{8-x}Fe_4Sn_{12}Se_{32}$

Koichiro Suekuni¹, Masaru Kunii², Hirotaka Nishiate², Michihiro Ohta², Atsushi Yamamoto² and Mikio Koyano¹ ¹School of Materials Science, Japan Advanced Institute of Science and Technology ²Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)

P121. Thermoelectric properties of indium-selenium compounds prepared by mechanical alloying and sintering

Ju-Hyuk Yim^{1,2}, Hyung-Ho Park², Chan Park³, Myong-Jae Yoo⁴ and Jin-Sang Kim¹

¹Electronic Materials Center, Korea Institute of Science and Technology

²Department of Materials Science and Engineering, Yonsei University

³Department of Materials Science and Engineering, Seoul National University

⁴Electronic Materials and Device Research Center, Korea Electronics Technology Institute

P122. Thermoelectric properties of pure bismuth-based materials with nano-scale precipitates

Yinglu Tang, Nicholas Heinz, and G. Jeffrey Snyder California Institute of Technology

P123. Synthesis and thermoelectric properties of MgB₄

Masatoshi Takeda and Hiroki Saitoh Nagaoka University of Technology

P124. Misfit layer sulfides, $(Bi_{1-x}AE_xS)_{1.2}(TiS_2)_2$, as novel thermoelectric materials Yulia Eka Putri¹, Chunlei Wan^{1,2}, Yifeng Wang¹, and Kunihito Koumoto^{1,2}

Yulia Eka Putri¹, Chunlei Wan^{1,2}, Yifeng Wang¹, and Kunihito Koumoto¹, ¹Graduate School of Engineering, Nagoya University ²CREST, Japan Science and Technology Agency

P125. Influence of copper on the thermoelectric properties of Ag_{3.6}Mo₉Se₁₁ compound

Tong Zhou¹, Bertrand Lenoir¹, Malika Colin¹, Anne Dauscher¹, Patrick Gougeon², and Michel Potel² ¹Institut Jean Lamour, UMR 7198 CNRS-Nancy Université-UPVM, Ecole Nationale Supérieure des Mines de Nancy,

²Unité Sciences Chimiques de Rennes, Equipe Chimie du Solide et Matériaux UMR6226 CNRS Université de Rennes

P126. Influence of semiconductor layer thickness on microstructure and thermoelectric properties of nitride metal/semiconductor superlattices for high-temperature energy conversion

Polina V. Burmistrova^{1,3}, Jeremy L. Schroeder^{2,3}, Philip Jackson⁴, Timothy D. Sands^{1,2,3}, and Ali Shakouri⁴
¹School of Materials Engineering, Purdue University
²School of Electrical and Computer Engineering, Purdue University
³Birck Nanotechnology Center, Purdue University
⁴Electrical Engineering, University of California-Santa Cruz.

P127. Formation and properties of embedded zincblende and wurtzite nitride nanocrystals

A. W. Wood¹, X. Weng², B. L. Cardozo³, Y. Q. Wang⁴, and R. S. Goldman^{1,3}

¹Department of Physics, University of Michigan

²Materials Research Institute, Penn State University

³Materials Science and Engineering, University of Michigan

⁴Materials Science and Technology Division, Los Alamos National Laboratory

P128. Polyaniline encapsulated graphene nanoplatelets for thermoelectric applications

Jinglei Xiang and Lawrence T. Drzal Department of Chemical Engineering and Materials Science Michigan State University

P129. Mobility and thermopower of surface and bulklike charges in Bi and Sb nanowires

T. E. Huber¹, A. Adeyeye¹, A. Nikolaeva^{2,3}, L. Konopko^{2,3}, R.C. Johnson⁴, and M. J. Graf⁴ ¹Howard University

²Academy of Sciences, Chisinau, Moldova

³International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland.

⁴Department of Physics, Boston College

P130. Thermoelectric dependence of AZO/InAZO quantum well multilayer structures on band-gap offsets at increasing operating temperatures

Sean Teehan, Harry Efstathiadis, and Pradeep Haldar College of Nanoscale Science and Engineering, University at Albany

P131. Artificially anisotropic material yielding a transverse thermoelectric effect

Tsutomu Kanno, Akihiro Sakai, Kouhei Takahashi, Atsushi Omote, Hideaki Adachi and Yuka Yamada Advanced Technology Research Laboratories, Panasonic Corporation, Kyoto, Japan

P132. Large thermal Hall coefficient in bismuth

W. Kobayashi^{1,2}, Y. Koizumi³, and Y. Moritomo¹ ¹Univ. Tsukuba; ²JST PRESTO; ³Waseda Univ.

P133. Thermoelectric property of textured polycrystalline Bi_2S_3 prepared by using Bi_2S_3 nanorods and nanotubes

Zhen-Hua Ge¹, Bo-Ping Zhang¹, Zhao-Xin Yu¹, and Jing-Feng Li² ¹Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing; ²State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing

P134. Thermoelectric properties of double-doped GaSb:(Zn, Te)

C.E.Kim¹, K. Kurosaki¹, H. Muta¹, U. Ohishi¹ and S. Yamanaka^{1,2} ¹Osaka University, Japan

P135. Type II narrow gap semiconducting superlattices as thermoelectric elements at cryogenic temperatures Chuanle Zhou, M. Norko, Matthew Grayson

Northwestern University, Electrical Engineering & Computer Science

P136. Thermoelectric transport in InGaAs with high concentration of rare-earth TbAs embedded nanoparticles Ekaterina Selezneva¹, Laura Cassels², Ashok Ramu³, Tela Favaloro¹, Je-Hyeong Bahk¹, Mona Zebarjadi¹, Zhixi Bian¹, John Bowers³, Joshua Zide² and Ali Shakouri¹ ¹Univ. of California - Santa Cruz; ²Univ. of Delaware; ³Univ. of California - Santa Barbara

ICT Sorting Category: B: Thermoelectric Materials

P137. Bulk nanostructured bismuth telluride (Bi₂Te₃) with improved figure of merit Mohsin Saleemi¹, Shanghua Li¹, Muhammet S. Toprak¹, Mats Johnsson², Mamoun Muhammed¹ ¹Functional Materials Division, Royal Institute of Technology (KTH), Stockholm ²Arrhenius Laboratory, Stockholm University

P138. Heterostructured nanocomposites of PbTe/Bi₂Te₃ for thermoelectrics

Shreyashi Ganguly¹, Kevin Zhou², Jeff Sakamoto², Ctirad Uher³, Stephanie L. Brock¹ and Donald Morelli² ¹Department of Chemistry, Wayne State University ²Chemical Engineering and Materials Science, Michigan State University ³Physics Department, University of Michigan

P139. Effect of uniaxial deformation on the thermoelectric anisotropy and magnetothermoelectric properties of glass coated Bi-Sn wires

A.A. Nikolaeva^{1,2}, L.A. Konopko^{1,2}, A.K. Tsurkan¹, O.V. Botnari¹ ¹Institute of Electronic Engineering and Nanotechnologies "D.Gitsu", AS of Moldova ²International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland

P140. Size quantization semimetal- semiconductor transition in Bi-2at% Sb nanowires: thermoelectrical properties.

A.A. Nikolaeva^{1,2}, L.A. Konopko^{1,2}, T.E. Huber³, P.P. Bodiul¹, I.A. Popov¹, E.F. Moloshnik¹ ¹Institute of Electronic Engineering and Nanotechnologies "D.Gitsu", AS of Moldova ²International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland ³Department of Chemistry, Howard University

P141. Growth, electrical and thermal properties of doped mono and polycrystalline SiGe-based quantum dots superlattices

G. Savelli, D. Hauser and J. Simon CEA Liten, Grenoble, FRANCE

P142. Enhanced electrical conductivities in $Si_{80}Ge_{20}B_{0.6}$ alloys with Er addition prepared by spark plasma sintering

R. Zhao, L. Shen and F. Guo Beijing Univ. of Tech.

P143. Search for resonant scatterers in bismuth and bismuth-antimony alloys - experiments

Hyungyu Jin¹, Bartlomiej Wiendlocha^{1,3}, Katherine S. Whitehouse¹, and Joseph P. Heremans^{1,2} ¹Department of Mechanical Engineering, Ohio State University

²Department of Physics, Ohio State University

³Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow

P144. Exploring thermoelectric performances of transuranium compounds based on neptunium, plutonium and americium

J.-C. Griveau¹, K. Gofryk², J. Rebizant¹, E. Colineau¹ ¹Joint Research Center, Institute for Transuranium Elements, European Commission; ²Los Alamos National Laboratory

P145. Trend for thermoelectric materials and their earth abundance

R. Amatya and R.J. Ram Research Lab of Electronics, Massachusetts Institute of Technology, Cambridge, USA

P146. Thermoelectric properties of PbSe doped with Indium

Eric Evola, Michele Nielsen, Joseph Heremans Ohio State University

ICT Sorting Category: C1: microstructure

P147. Effects of reduction potential on the microstructure and transport properties of electrodeposited thermoelectric Bi₂Te₃ nanowires

Ho Sun Shin¹, Seong Gi Jeon², Jin Yu², Jae Yong Song¹, Jinhee Kim¹, Nguyen Thach¹, Ho-Ki Lyeo¹, Dongmin Kang¹ and Hyun Min Park¹

¹Korea Research Institute of Standards and Science

²Korea Advanced Institute of Science and Technology

P148. The preferred orientations and the lattice parameters of $Ca_3Co_4O_9$ thin films deposited on sapphire substrate

O-Jong Kwon¹, Jangwon Han¹, Hyunwoo Yoo^{1,2}, Hyo-Jung Kim^{1,2}, Kyeongdal Choi³, Jin-Sang Kim², Chan Park¹ Seoul national University

²Korea Institute of Science and Technology

³Korea Polytechnic University

P149. Effect of post-annealing on thermoelectric properties of bismuth-antimony-tellurium thin films deposited by co-sputtering

Seong-jae Jeon^{7,2}, Minsub Oh^{1,2}, Seungmin Hyun¹ and Hoo-jeong Lee² ¹Division of Nano-Mechanical Systems Research, Korea Institute of Machinery & Materials ²School of Advanced Materials Science and Engineering, Sungkyunkwan University

P150. The study of thermoelectric properties of silicon nanowires

Younghoon Hyun, Moongyu Jang, Youngsam Park, Wonchul Choil, Taehyung Zyung, Yil-Suk Yang and Jongkee Kwon

ETRI, Daejeon, Korea, 1KAIST, Daejeon, Korea

P151. Electron backscatter diffraction for rapid characterization of thermoelectric material structure

J. B. Beck¹, M. Alvarado¹, D. Nemir¹, M. M. Nowell², E. Rubio¹ ¹TXL Group, Inc ²EDAX Corporation

ICT Sorting Category: C2: properties

P152. Optimization of mechanical and thermoelectric properties for $GeTe_{0.91}PbTe_{0.09-x}BiTe_x$ consolidated by hotpressed process

Chia-Chan Hsu¹, Hsiu-Ying Chung², Tse-Hsiao Lee¹, Chun-Mu Chen¹, Hsu-Shen Chu¹, Jenn-Dong Hwang¹, Tao-Hsing Chen³

¹Industrial Technology Research Institute, Taiwan

²Department of Materials Science and Engineering, Feng Chia University

³Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences

P153. High temperature equipment for measuring Hall coefficient and charge carrier concentration, mobility and resistivity

Kasper A. Borup, Mogens Christensen, and Bo B. Iversen Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University

P154. Electrical and mechanical properties of CoSb₃ under thermal and cyclic compressive loads

Wen Pengfei^{1,2}, Li Peng^{2,3}, Zhang Qingjie², Ruan Zhongwei¹, Liu Lisheng^{1,2}, and Zhai Pengcheng^{1,2} ¹Department of Engineering Structure and Mechanics, Wuhan University of Technology ²State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

P155. Physical properties of materials based on $Tl_{10}Te_6$: La and Sn doping for thermoelectric purposes

B. A. Kuropatwa, S. Bangarigadu-Sanasy, H. Kleinke University of Waterloo

P156. Single Bi_2Te_3 nanowire assembly onto a pre-fabricated platform by using dielectrophoresis and thermoelectric properties measurement

Z. Wang, M. Kroener and P. Woias Institute for Microsystems Technology-IMTEK, University of Freiburg

P157. Methods and equipment for quality control of thermoelectric materials

L. I. Anatychuk, M. V. Havrylyuk and V. V. Lysko Institute of Thermoelectricity, Chernivtsi, Ukraine

P158. Extraction and implementation of non-ideal parameters of thermoelectric generation systems in SPICE modeling

M. Chen¹, J. Gao^{2,3}, Z. Kang⁴, J. Zhang⁴, and Q. Du² ¹Institute of Energy Technology, Aalborg University, ²School of Mechanical and Auto Engineering, South China University of Technology ³Hebei University of Science and Technology ⁴R&D Center, Fuxin Electronic Technology Co., Ltd.

P159. Thermoelectric transport in nanostructured bulk materials from sulfur-doped pnictogen chalcogenide nanoplate crystals

Yanliang Zhang¹, Rutvik J. Mehta², Matthew Belley¹, Liang Han¹, Theodorian Borca-Tasciuc¹ and Ganpati Ramanath²

¹Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute ²Department of Materials Science and Engineering, Rensselaer Polytechnic Institute

P160. Thermomagnetic figure of merit in semimetals: the case of graphite

Zengwei Zhu, Benoît Fauqué and Kamran Behnia Laboratoire Photons et Matière (CNRS-UPMC), ESPCI, Paris, France

P161. Advanced research in thermoelectrics

Claus Linseis Linseis GMBH

P162. Thermal characterization of bismuth tellurides

J. Blumm, A. Schindler, A. Lindemann NETZSCH-Geraetebau GmbH

P163. Magnetic, optical and structural properties of Fe doped Bi₂Te₃ single crystal

Bhakti Jariwala¹, Dimple Shah¹, Sandip Vyas² ¹Department of Applied Physics, S.V. National Institute of Technology ²School of Science, Gujarat University, Ahmedabad.

ICT Sorting Category: C: Measurement & Characterization

P164. Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasmasintered $(Bi,Sb)_2Te_3$ thermoelectric materials

Wenjie Xie^{1,2}, Jian He², Song Zhu², Tim Holgate², Shanyu Wang¹, Xinfeng Tang¹, Qingjie Zhang¹, and Terry M. Tritt²

¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

²Department of Physics & Astronomy, Clemson University, Clemson, SC 29634-0978, USA

P165. Semiconductor measuring thermoelectric converters of improved accuracy

L. I. Anatychuk, V. I. Bodnaruk and D. D. Taschuk Institute of Thermoelectricity, Chernivtsi, Ukraine

ICT Sorting Category: D1: design and fabrication

P166. Simulation of a silicide-based thermoelectric generator for power generation

A.J. Zhou¹, J.Z. Li¹, X.B. Zhao², T.J. Zhu², G. Karpinski³, and E. Mueller³

¹State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China

²State Key Laboratory of Silicon Materials, Zhejiang University

³Institute of Materials Research, German Aerospace Center (DLR

P167. Optimal design of a segmented thermoelectric generator

Cai Lanlan¹, Li Peng¹, Zhai Pengcheng², Tang Xinfeng¹, Zhang Qingjie¹ and M. Niino³ ¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

²Department of Engineering Structure and Mechanics, Wuhan University of Technology ³Japan Aerospace Exploration Agency

P168. Examination of a thermally suitable construction for a non-conventional uni-leg Mg₂Si thermoelectric power generator

T. Sakamoto¹, T. Iida¹, Y. Taguchi², S. Kurosaki¹, Y. Hayatsu¹, S. Sakuragi¹, K. Nishio¹, Y. Kogo¹, and Y. Takanashi¹

¹Department of Materials Science and Technology, Tokyo University of Science ²Union Material Inc.

P169. A resistance ratio analysis for CoSb₃-based thermoelectric unicouples

Son-Mok Choi¹, Kyoung-Hoon Kim¹, Seong-Min Jeong¹, Hyung-Seuk Choi¹, Won-Seon Seo¹, Il-Ho Kim² ¹Green Ceramic Div., Korea Institute of Ceramic Engineering and Technology (KICET) ²Department of Material Science and Engineering, Chungju National University

P170. Design and optimization of gradient interface of CoSb₃/Bi₂Te₃ thermoelectric materials

Gang Liu, Wenyu Zhao, Hongyu Zhou, Xin Cheng and Qingjie Zhang State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

P171. Effect of surface preparation on mechanical properties of Ni contacts on polycrystalline $(Bi_{1-x}Sb_x)_2(Te_{1-x}Se_y)_3$ alloys

S. Kashi, M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, S. Turenne École Polytechnique de Montréal

P172. Design and fabrication of the flexible thermoelectric cdevice using FPCB

Jung Yup Kim, Kwang Eun Lee and Seungwoo Han Korea Institute of Machinery and Materials

P173. Comparison of thermoelectric multiphysics model and device

Mikko Ruoho¹, Tuomas Rossi¹, Ilkka Tittonen¹, Erno Soinila², Mika Jokipii³ and Jyrki Tervo³

¹Department of Micro and Nanosciences, Aalto University

²Department of Engineering Design and Production, Aalto University

³VTT Technical Research Centre of Finland

P174. A study of thermoelectric properties of Bi₂Te₃ alloys with Ta barrier layer

Yi-Ray Chen¹, Wen-Hsuan Chao², Chien-Hsuan Yeh¹, Hsiao-Hsuan Hsu¹, Ya-Wen Chou¹ ¹Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Taiwan ²Material & Chemical Research Laboratories, Industrial Technology Research Institute, Taiwan

P175. Numerical analysis performance of thermoelectric module composed of Bi₂Te₃ (Sb,Te) alloys by directional solidification

Ping-Jen Lee^{1,2}, Long-Sun Chao¹, Jheng-Han Yang¹, Yi-Ray Chen³ and Ya-Wen Chou³ ¹Department of Engineering Science, National Cheng Kung University, Taiwan ²Nano Technology Research Center, ITRI, Taiwan ³Green Energy and Environment Research Laboratories, ITRI, Taiwan3

P176. Effect of encapsulation of thermoelectric power generator

A.Yamamoto, K. Nagase, H. Takazawa, Hirotaka Nishiate, K. Ueno National Institute of Advanced Industrial Science and Technology

P177. Silicon nanowires based thermoelectric generator from a top-down approach Y. Li^{1,2,3}, K. Buddharaju¹, N. Sing¹, G. Q. Lo¹, and S. J. Lee³ ¹Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), ²NUS Graduate School for Integrative Science and Engineering ³ECE Department, National University of Singapore

ICT Sorting Category: D2: thin film devices

P178. Thermoelectric characteristics of thermopile devices consisting of bismuth-telluride and antimony-telluride thin-film legs

M. Y. Kim, Y. N. Choi, J. M. Bae and T. S. Oh Department of Materials Science and Engineering, Hongik University, Seoul, Korea

P179. Effect of dopant concentration on thermoelectric and hydrogen sensing properties of silicon-germanium thin films

Jing-Wen Ho, Li-Shin Chang Dept. of Mater. Sci. & Eng., Natl. Chung Hsing Univ

ICT Sorting Category: D3: device performance

P180. Energy capabilities of permeable segmented thermoelements in cooling mode L. I. Anatychuk and R.G. Cherkez

Institute of Thermoelectricity, Chernivtsi, Ukraine

P181. Transverse-type short-circuited thermoelements

L.I. Anatychuk and R.R. Kobylyansky Institute of Thermoelectricity, Chernivtsi, Ukraine

P182. Transverse-type spiral anisotropic thermoelement

L. I. Anatychuk and A. V. Prybyla Institute of Thermoelectricity, Chernivtsi, Ukraine

P183. Validation of the thermoelectric properties of advanced high temperature materials using a segmented couple performance test

Billy C. Li¹, Pawan Gogna¹, Chen-Kuo Huang¹, Kurt Star², Samad Firdosy¹, Jeff Sakamoto³, Vilupanur A. Ravi^{1,4}, and Jean-Pierre Fleurial¹ ¹Jet Propulsion Laboratory, California Institute of Technology ²University of California, Los Angeles

³Michigan State University

⁴California State Polytechnic University, Pomona

P184. Thermal optimization of thermoelectric module ceramic substrate

A. Rezania, L. A. Rosendahl Department of Energy Technology, Aalborg University

P185. Design of a portable test system for measuring thermoelectric generator module parameters

Amir Yadollah Faraji and Aliakbar Akbarzadeh Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical. and Manufacturing Engineering, RMIT University

P186. Thermoelectric generation for different material sets having the same Z

David Nemir, Jan Beck and Manuel Alvarado TXL Group, Inc.

P187. Improving the testing of power generation modules and resulting performance projections

Michael Spry Tellurex Corporation

ICT Sorting Category: E1: cooling applications

P188. Thermoelectric self refrigeration: experimental and computational approach

A. Martínez, D. Astrain, A. Rodríguez Mechanical, Energy and Materials Engineering Department Public University of Navarre, 31006 Pamplona, Spain

P189. Computational study on the thermal influence of the components of a thermoelectric ice maker on the ice production

A. Rodríguez, D. Astrain, A. Martínez, and J.G.Vián Mechanical, Energy and Materials Engineering Department Public University of Navarre, 31006 Pamplona, Spain

P190. Computational study on the temperature control system of a thermoelectric refrigerator

D. Astrain, A. Martínez, J. Gorraiz, and A. Rodríguez Mechanical, Energy and Materials Engineering Department Public University of Navarre, 31006 Pamplona, Spain

P191. The development of high efficiency thermoelectric water heap pump

Ming-Lang Hung, Jyi-Ching Perng, and Ya-Wen Chou Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Taiwan

ICT Sorting Catergory E1: cooling applications

P192. Modeling of thermoelectric system for simultaneous cooling and heating M.G. How¹, S.I. Gilani², M.S. Aris¹ and K.S. Ong² ¹Universiti Teknologi PETRONAS; ²Monash University Malaysia

P193. Improvement of cooling performance of a compact thermoelectric air conditioner using an evaporative cooling system

C. Lertsatitthanakorn, W. Tipsaenporm and B. Bubphachot Faculty of Engineering, Mahasarakham University, Khantarawichai, Mahasarakham, Thailand

P194. The cooling system of 3-Dimensional integrated circuits using thin film thermoelectric cooler

Namjae Kim¹, Jinho Jung¹, Younggyo Gim¹ and Shiho Kim² ¹Department of Electrical Engineering, Chungbuk National Univ ²School of Integrated Technology and Yonsei Institute of Convergence Technology (YICT), Yonsei University

ICT Sorting Category: E2: automotive applications

P195. Potential usage of thermoelectric devices in a HTPEMFC system: two case studies Xin Gao, Min Chen, Søren Juhl Andreasen, and Søren Knudsen Kær

Aalborg University

P196. Heat exchanger model for recovering waste from diesel engine exhaust for thermoelectric power generation

C. Baker and P. Vuppuluri University of Texas at Austin

P197. Withdrawn

ICT Sorting Category: E3: generator applications

P198. A flameless combustion-based thermoelectric power generation system

Heng Xiao¹, Kuanrong Qiu² ¹School of Power Engineering, Chongqing University, Chongqing 400044, China ²CANMET Energy Technology Centre-Ottawa, Natural Resources Canada

P199. Solar thermoelectric generator trials for the developing world

R. Amatya and R.J. Ram Research Laboratory of Electronics, Massachusetts Institute of Technology

P200. Integration of a thermoelectric generator assembly with fuel-fired residential boiler

K. Qiu¹, H. Xiao^{1, 2}, and A.C.S. Hayden¹ ¹CANMET Energy Technology Centre-Ottawa, Natural Resources Canada ²School of Power Engineering, Chongqing University, Chongqing 400044, China

P201. Thermoelectric materials for efficient solar high temperature converters

Anke Weidenkaff, A. Veziridis, L. Karvonen, S. Populoh, A. Shkabko, N. Schaeuble Empa, Swiss Federal Laboratories for Materials Science and Technology

P202. High-performance solar thermoelectric power conversion: modeling, optimization, and experimental demonstration

Daniel Kraemer¹, Kenneth McEnaney¹, Bed Poudel², J. Christopher Caylor², Hsien-Ping Feng¹, Yi Ma³, Bo Yu³, Xiao Yan³, Giri Joshi³, Xiaowei Wang³, Dezhi Wang³, Andrew Muto¹, Matteo Chiesa^{1,4}, Zhifeng Ren³, and Gang Chen¹

¹Mechanical Engineering Department, Massachusetts Institute of Technology,

²GMZ Energy

³Department of Physics, Boston College

⁴Masdar Institute of Science and Technology, Abu Dhabi, UAE

P203. Development of 200w MPPT power conditioner with inter leave power switching control

Hiroshi. Nagayoshi¹, Tatsuya Nakabayashi², Hiroshi Maiwa², and Takenobu Kajikawa²

¹Tokyo National College of Technology

²Shonan Institute of Technology

P204. Hybrid producer gas by using by biomass – thermoelectric

C. Punlek¹, S.Maneewan¹, S. Chindaruksa¹ and C. Lertsatitthanakorn²

¹Thermal Energy and Energy Conservation Promotion Research Unit, Physics Department, Faculty of Science, Naresuan University, Phitsanulok, 65000 Thailand ²Faculty of Engineering, Mahasarakham University, Khantarawichai, Mahasarakham 44150, Thailand

P205. Experimental study on solar parabolic dish thermoelectric power generator

S. Shanmugam¹, M. Eswaramoorthy², AR.Veerappan³ ^{1,3}Department of Mechanical Engineering, National Institute of Technology, Trichirappalli, India ²Department of Mechanical Engineering, Adhiyamaan College of Engineering, Hosur,India

P206. Performance prediction of the waste heat recovery system by thermoelectric power generator

Gia-Yeh Huang¹, Cheng-Ting Hsu², Chun-Jen Fang³ and Da-Jeng Yao^{1,2} ¹Department of Power Mechanical Engineering, National Tsing Hua University ²Institute of NanoEngineering and MicroSystems, National Tsing Hua University ³China Steel Corporation, Kaohsiung 81233, Taiwan

P207. A maximum power point tracking controller for thermoelectric generators with peak gain control of boost DC-DC converters

Jungyong Park¹, Nyambayar Baatar¹ and Shiho Kim² ¹Department of Electrical Engineering, Chungbuk National University, Cheongju, Chungcheongbuk-do, 361-763, Korea ²School of Integrated Technology and Yonsei Institute of Convergence Technology(YICT), Yonsei University, Songdo, Inchen, 406-840, Korea

P208. Scalable Cost/Performance Analysis for Thermoelectric Waste Heat Recovery Systems

K. Yazawa and A. Shakouri Univ. of California Santa Cruz

P209. Integrating aerogel into space and terrestrial thermoelectric generator technology

Travis Thompson, Ryan Maloney, and Jeff Sakamoto Chemical Engineering and Materials Science Department, Michigan State University

P210. Pulse mode operation of thermoelectric generators

Gao Min School of Engineering, Cardiff University

ICT Sorting Category E4: Other Waste Heat Recovery

P211. Waste-heat recovery from phosphors

A. Vogelsang¹, S. Ben Salem², G. Bastian¹ ¹Hochschule Rhein-Waal, Fakultät Technologie und Bionik, Emmerich, Germany ²University of Applied Sciences Trier, Faculty of Engineering

P212. On the prospects of using thermoelectric recuperators in heat engines

L. I. Anatychuk Institute of Thermoelectricity, Chernivtsi, Ukraine

ICT Sorting Category: E5: other industrial aspects

P213. Thermoelectric properties dependence on the performance of Peltier current leads under over-current conditions

Toshio Kawahara¹, Masahiko Emoto², Makoto Hamabe¹, Hirofumi Watanabe¹,

Yury Ivanov¹, Jian Sun¹, and Satarou Yamaguchi¹

¹Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Aichi 487-8501 Japan, ²National Institute for Fusion Science, Gifu 509-5292 Japan.

P214. Thermoelectric generation systems and their power electronics stage

J. Gao^{1,2}, L. Ni³, K. Sun⁴, M. Chen⁵, Z. Kang⁶, L. Zhang³, Y. Xing³, and J. Zhang⁶

¹School of Mechanical and Auto Engineering, South China University of Technology, ²Hebei University of Science and Technology

³Jiangsu Key Lab of New Energy Generation, Nanjing University of Aeronautics & Astronautics ⁴State Key Lab of Power Systems, Dept. of Electrical Engineering, Tsinghua University ⁵Institute of Energy Technology, Aalborg University ⁶P & D Contor, Electronia Technology Co., Ltd

⁶R&D Center, Fuxin Electronic Technology Co., Ltd

ICT Sorting Category: E: System & Industrial Applications

P215. Study on the design and initial experiments of thermolelectric generator using exhaust heat of car S.H Quan, Y.D Deng, and R.Quan School of Automobile Engineering. Weber University of Technology

School of Automobile Engineering, Wuhan University of Technology

P216. Design and Application of Thermoelectric Generators on the Waste Heat Recovery from Heating Furnace C.J. Fang¹ and J.D. Hwang²

¹China Steel Corporation, Kaoshiang, Taiwan, R.O.C ²Industry Technology Research Institute, Hsinchu, Taiwan, R.O.C. Grand Traverse Resort and Spa Governor's Hall Conference Area

