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Abstract 
 
This paper presents some considerations 

about the thermal analysis of a 
thermoelectric leg. The explicit expressions 
of the temperature and the heat flux along 
the leg are obtained for steady state and 
also transient state. The influence of the 
Thomson effect is investigated in the case 
of steady state heat transfer and the Laplace 
transform is used to solve the transient case. 

 
Introduction 
 

There is an increasing use of thermoelectric 
devices with success in many fields such as 
aerospace, automotive and building 
applications. On the other hand, the coupled 
effects involved in such system usually 
leads to complex modelling. In order to 
predict the performances of the device, few 
approaches can be driven to estimate the 
efficiency. Several methods could be used: 
experimental, numerical and semi-
analytical. For the experimental ones, the 
device must already exist whereas 
numerical and semi-analytical methods 
could provide more or less realistic 
predictions.  

In this paper, a semi-analytical method 
has been chosen in order to better 
understand the underlying physical 
phenomena and the contribution of the 
different effects. A thermal modeling of a 

thermoelectric leg is presented. The aim is 
to determine the expressions of the 
temperature within the thermoelement and 
also the heat fluxes. Indeed these two 
quantities are needed to determine the 
performance of the device by calculating 
the efficiency of the element or for instance 
by evaluating the COP. The steady-state 
and the transient cases are investigated. The 
Joule contribution is taken into account 
(introducing a source term in the heat 
transfer equation) but in a first 
approximation the Thomson coefficient is 
assumed to be equal to zero. Explicit 
expressions of the transient temperature and 
of the heat flux are then obtained. 

 
Equations and semi analytical 

solutions 
 
Consider a single thermoelectric leg of 

length l and cross-sectional area A. An 
electrical current I=JA enters uniformly 
into the element. The one-dimensional 
energy balance [1,2] that describes the 
thermal behaviour of the leg is the 
following partial differential equation 
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The temperature is a function of the 
spatial variable x and the time t. The 
relevant material properties are the density 
ρ, the heat capacity cp, the thermal 
conductivity λ, the electrical conductivity 
σ.  
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• Steady-state case 
In the steady-state case, the classical 

boundary conditions are the following ones: 
the hot side of the leg is at absolute 
temperature TH and the cold side at 
temperature TC . The equation (1) becomes 
a classical ordinary differential equation. 
The temperature within the leg is then given 
by the analytical expression: 
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If the Thomson effect is taken into account, 
the expression of the temperature contains 
no quadratic terms but exponential terms: 
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The influence of the Thomson coefficient 
on the temperature profile into the leg is 
represented in the Figure 1 and the data 
used to perform the simulations are 
summarized in the Table1.  
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Figure 1: Influence of the Thomson 

coefficient on the temperature profile 

TC (K) 270 TH (K) 300 
L (m) 1.4e-3 A (m2) 1.4e-6 
I (A) 2 σ (Ω-1m-1) 9.74e4 
λ (Wm-1K-1) 1.7 α (VK-1) 2.07e-4 

Table 1: Data used for simulations 

It is interesting to have the analytical 
expression of the temperatures given by (2) 

and (3) because it makes it obvious which 
coefficients groups are important.  
If there is no Thomson effect, an important 
parameter for the temperature distribution 
within the leg is ξ=J 2/2σλ  (of course the 
difference between the hot and the cold 
temperatures plays also a significant role).  
If the Thomson effect is taken into account, 
the important groups are: ζτ = J /σ τ  and 
ητ = τ J /λ . One notes that ζτ ητ= 2 ξ. 

It is although interesting to have the 
expression of the heat flux going through 
the thermoelement in order to have a 
complete modelling of the heat transfer 
within the leg. 

Now, let express the heat flux which is a 
linear combination of the temperature and 
the derivative of the temperature: 

 
dx
dTAIT λαϕ −=          (4) 

where α is the Seebeck coefficient. 
The expression of the heat flux going 
through the leg is: 
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If the Thomson effect is not neglected, the 
analytical expression of the heat flux is: 

( )λτϕ Jxbxbbx exp)( 210 ++=         (6) 

    ( ) ( )στλα AJTIb C −Ξ+=0                (6a) 

    στα JIb =1                                      (6b) 

    Ξ+Ξ= JAIb τα2                              (6c) 
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The heat flux is plotted in the Figure 2, the 
entropy flux density in the Figure 3 without 
Thomson effect and also for a Thomson 
coefficient τ = 1.04e-4 VK-1 .  
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Figure 2: Heat flux along the TE leg 
 

The entropy flux density Js =φ/AT is 
calculated via equations 3 and 5 (and 
respectively with equations 4 and 6 if the 
Thomson effect is taken into account). 
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Figure 3: Entropy flux density along the leg 
 
The entropy generated Sgen = d(Js)/dx is 
easily obtained from the entropy flux 
density (see Figure 4). 
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Figure 4: Entropy generated along the leg 

 

• Transient case 
For the transient case, let consider the 
equation (1) written in a more synthetic 
way: 
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The typical property used in transient case 
is the thermal diffusivity a; the initial 
temperature of the leg is T0. 

To solve this partial differential equation, 
it is very convenient to apply the Laplace 
transform which transforms the partial 
differential equation into an ordinary 
differential equation in the Laplace domain. 
Let introduce p the Laplace variable and 
note: 
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The equation (7) becomes 
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The solution of the equation (10) is the 
sum of the general solution of the 
homogeneous equation and a particular 
solution: 
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where C and D are to be determined by the 
boundary conditions. They depend on the 
Laplace variable p but not on the space 
variable x. 
The boundary conditions are the following: 
 0)0( 0 === θθ x                       (12a) 
 pLx L ∆=== θθ )(               (12b) 
 ( )CH TT −=∆ ε                           (12c) 
with ε=+1 if heating and  ε=−1 if cooling. 

Considering equations (12) together with 
equation (11), it comes: 
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Another explicit expression of the 
temperature within the leg is after 
rearranging the exponentials: 
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with aps /* = . 
The expression of the temperature (14) is 

given in the Laplace space. The Stephest 
[3] or De Hoog [4] method is used to come 
back in the time domain. The transient 
temperature in the leg is computed with 
Matlab and plotted in the Figure 5. The 
value of the diffusivity chosen for the 
simulations is a = 4.19501e-7 m2s-1. 
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Figure 5: Temperature profiles within the 

leg at several times steps 
 
The important parameters on the 
temperature are still ∆  and ξ but there is 
another group appearing due to the transient 
state: it is the ratio of the Laplace variable 
over the thermal diffusivity i.e. p/a and also 
its square root and pL2/a (one recognizes 
the obvious link with the characteristic time 
or Fourier time defined by t*=L2/a). 

From these temperatures for transient 
state, it is possible to obtain the transient 
heat fluxes going through the leg and also 
the entropy heat fluxes or for instance a 
transient coefficient of performance. 

The results proposed here have been 
obtained under specific boundary 
conditions, but if they changed, only the 
constants C and D have to be determined 
again. 

Another practical way to solve the heat 
transfer equation given by equation (7) is to 
perform a quadrupole formulation of the 
problem. In that way, it provides a transfer 
matrix for the thermoelectric leg that 
linearly links the input temperature-heat 
flux column vector at the front side and the 
output vector at the back side. In that case, 
there is no need to determine explicitly the 
constants C and D. 
 

Conclusion 
 
A thermal analysis has been performed 

for a thermoelectric leg for steady and 
transient state. When the Thomson effect is 
neglected, the temperature repartition is a 
second order polynomial law whereas it is 
an exponential combined with a linear term 
if the Thomson coefficient is not equal to 
zero. Not taking the Thomson effect into 
account leads to an overestimation of the 
temperature. Nevertheless as soon as the 
Thomson coefficient is low enough, its 
influence on the heat flux and entropy heat 
flux is not so important. 

To obtain analytical expressions of the 
temperature, the heat flux or entropy allows 
bringing to the fore the parameters (group 
of thermophysical and thermoelectrical 
properties) which play a significant role on 
the heat transfer. 

The outlook is to perform the whole 
quadrupole formulation of the heat transfer 
in a thermoelectric leg and to investigate 
the influence of all the parameters on the 
temperature repartition and on the COP. 
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