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Abstract 

The model of thermoelectric material 
composed of nanoparticles with point 
contacts was considered. Theoretical 
estimation of the material basic 
characteristics was made. Calculations 
showed that the thermoelectric figure of 
merit ZT of nanocomposite material could 
exceed ZT of the same bulk thermoelectric 
material at definite conditions. It can be 
explained by the increase of total electric 
conductivity of material thanks to tunneling 
electrons through area adjacent to point 
contact and by conservation of 
thermopower and thermal conductivity of 
point contact. Results of calculations are 
discussed. 

 
Introduction 

The quantum-point contact (QPC) may 
play a central role in development of high 
efficiency thermoelectric materials. 
Possibility of increasing the thermoelectric 
figure of merit ZT = T·α2·σ/(κel + κph), 
where α - the Seebeck coefficient,  σ - the 
electrical conductivity, and κel and κph - the 
electron and phonon thermal conductivities, 
is connected with increasing of the effective 
area contact for electrons thanks to 
tunneling electrons through vacuum gap 
surrounding the physical area of QPC [1].  
In this paper we proposed the simple model 
for calculations of characteristics of 
material composed of spherical 
nanoparticles with point contacts.   

 
Model of material  

The model of material is presented on 
Fig. 1 a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. a) Model of thermoelectric material 
composed of spherical nanoparticles (balls) and 
point contacts. b) Unit cell of material consisted 
of semiconductor ball and QPC.  
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Material can be regarded as the regular 

structure composed of spherical 
semiconductor particles (balls) with 
quantum-point contacts. Ball diameter and 
physical diameter of QPC are denoted as D 
and dc respectively. These values lay in 
range of 1-300 nm. So as dc < D << λe, 
where λe – the mean free path of electrons, 
we can regard the material as combination 
of long one-dimension nanowires (1D 
nanowires) with variable diameter from dc 
to D in direction of electric current flow.  
Also we can divide each nanowire into a 
number of unit cells consisted of one ball 
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and one QPC (dashed area on Fig. 2 b)) 
connected in series. Calculations can be 
performed only for one unit cell. It is 
justified by the next reasons: the probability 
of electron propagation through QPC is 
very small and most electrons inside each 
ball are in thermal equilibrium. Propagation 
of electrons through QPC can be described 
in ballistic regime. Electric conductance of 
one ball is proportional to quantum 
conductance 2q2/h. In calculations of 
electron transport through QPD we must 
use effective diameter of contact deff  > dc 
thanks to tunneling electrons through 
vacuum gap surrounding the physical point 
contact. The value of deff may be found 
from Fig. 1 b), where to ≈ 0.6-0.7 nm is 
maximal distance that electron can pass by 
tunneling with the probability more than 
0.95 [1]. 
 
General equations  

We conduct calculations of 1D 
semiconductor unit cell in ballistic regime 
(λe >> D) like to Landauer-Buttiker 
formalism for metal nanowires [2]. 

Sharvin resistance of ball in ballistic 
regime is presented equation (1) [3], where 
the second term is the number of traverse 
modes of electron propagation in 1D 
structure: 
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where hp – Plank constant, q –electron 
charge, ke – electron wave vector and E – 
electron energy. 

Number of channels in 1D structure 
can be expressed by staircase function of 
Nch(D) at mean electron energy E=Kb·T, 
where Kb – Boltzmann constant and T – 
absolute temperature: 
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Expressions for electric current and 

energy flux through 1D structure can be 
presented as:  
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where ve(E) = (2E/m)1/2 – electron group 
velocity, g(E) = (m/2E)1/2/hp – density of 
states, T(E) – coefficient of electron 
transmission, fl(E) and fr(E) – Fermi-Dirac 
function on the left and right sides from 
QPC respectively at different values of 
temperature and potential: 
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In linear response regime electric 

conductance, heat conductance connected 
with electron flow and the thermopower 
coefficient (the Seebeck coefficient) in 
confined structure are determined by the 
next equations: 
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where x = E/Kb·T and η = Ef/Kb·T – 
dimensionless electron energy and Fermi 
energy respectively 
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Ball characteristics 

Ball characteristics σb(D, η), κeb(D, η) 
and αb(η) were calculated with help of the 
above equations at T(E) = 1. 

Full ball heat conductance is equal to 
sum of electron and phonon heat 
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conductance: 
 

κb D η,( ) κeb D η,( ) κph_b D( )+ , 
where κph_b as function of  D and mean 
free path of phonons λph that can be 
presented as in [4]: 
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where κo – heat conductivity of bulk 
semiconductor material. 
 
QPC characteristics  

Effective diameter of QPC deff by 
simple geometrical reasoning (Fig. 2) is 
equal to: 
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Coefficient of electron transmission 

T(E) for plane electron wave falling on 
point contact of diameter deff  can be 
derived by transformation of formula for 
Fraunhofer diffraction of light on round 
aperture. We must replace wave vector of 
light kphoton on wave vector of electron ke 
= 2·π·(2mE)1/2/hp in Fraunhofer formula 
and complete integration on solid angle in 
all space behind the point contact. For 
Tc(E) we have: 
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QPC characteristics σc(D, η), κec(D, η) 
and αc(η) were calculated with help of 
equations. 

Full QPC heat conductance is equal to 
sum of electron and phonon heat 
conductance: 
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where γ(λph/dc) is a slowly varying 
function with γ(0) = 1 and γ ) = 0.694. 
Simple expression for κph_c(dc) was 
confirmed by molecular dynamic 
simulation of thermal transport at a 
nanometer scale constriction  [5].  

∞(

 
Characteristics of unit cell 

Characteristic of unit cell can be 
simply derived by adding of separate 
inverse values for circuit of ball and QPC 
connected in series: 
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Characteristics of material composed 
of balls with QPC 

Bulk material characteristics (electric 
conductivity σ(dc,D,η), thermal 
conductivity κ(dc,D,η), thermopower 
α(dc,D,η) and figure of merit Z(dc,D,η)·T) 
are presented by the next equations: 
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. 

For obtaining σ(dc,D,η) and κ(dc,D,η) 
we sum up unit cells in parallel and in 
series with period (D2 –dc2)1/2. 

 
Results of calculations 

We carried out calculations of basic 
thermoelectric characteristics in the 
following assumptions: effective electron 
mass m = 0.5mo, T = 300 K and λph = 10 
nm. 

The calculated results is valid for 1D 
structures when its characteristic 
dimensions lay in the nanometer range 
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(diameter of spherical particles D = 10 – 
300 nm and diameter of point contact dc = 
(0 – 0.5)·D). 

The results of calculations are 
presented on Fig. 2-6. 
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Fig. 2. Dependence of ZT(dc,D,η) on reduced 
Fermi energy η for diameter of physical point 
contact dс = 1 nm and particle diameter D = 10, 30 
and 100 nm. 

 
With the increase of particle diameter 

D the maximum of figure of merit increases 
and move to lower values of Fermi energy. 
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Fig. 3. Dependence of ZT(dc,D,η) on diameter of 
physical point contact dc in nm for reduced Fermi 
energy η = 0 and particle diameter D = 10, 30 and 100 
nm. 

log

The figure of merit is monotone 
decreasing function against diameter of 
point contact dc.  

Electric conductivity of material 
increases with the growth of Fermi Energy 
and point contact diameter, but remains 
lower the bulk material conductivity by 2-3 
order of magnitude. 
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Fig. 4. Dependence of ZT(dc,D,η) on diameter of 
physical point contact dc in nm for reduced Fermi 
energy η = 0 and particle diameter D = 10, 30 and 
100 nm. 
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Fig. 5. Dependence of electric conductivity 
σ(dc,D,η) on reduced Fermi energy η for 
diameter of physical point contact dс = 1 nm 
and particle diameter D = 10, 30 and 100 nm. 
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Fig. 5. Dependence of electric conductivity 
σ(dc,D,η)  in 1/Ω.m on diameter of physical point 
contact dc in nm for reduced Fermi energy η =  – 
1 and particle diameter D = 10, 30 and 100 nm. 

 

P1-05-4 



0 10 20 30 40 50
0

1

2

3

4

5

6

log σ dc 10, 0,( )( )

log σ dc 30, 0,( )( )

log σ dc 100, 0,( )( )

dc
Fig. 6. Dependence of electric conductivity 
σ(dc,D,η)  in 1/Ω.m on diameter of physical 
point contact dc in nm for reduced Fermi energy 
η = 0 and particle diameter D = 10, 30 and 100 
nm. 

 
 
Conclusions 

In comparison with bulk thermoelectric 
material the figure of merit Z·T of material 
made of nanopowders in definite range of 
variables is greater by 1.5-5.2 times, but 
electric conductivity is lower by 2-3 orders 
of magnitude. High value of Z·T is 
connected with the excess of QPC effective 
diameter over the diameter of physical 
contact and consequently domination of 
electron flow over phonon flow.  

The figure of merit reaches maximum 
values in flat structures in which layers of 
thermoelectric material are separated by 
thin (<0.6-0.7 nm) vacuum gaps [1]. In 
such structures the component of phonon 
conductivity is fully eliminated. From 
practical point of view creation of such 

structures is impossible. The best way of 
approach to flat structures is the 
manufacturing of structures with point 
contacts. Maximum reliability and 
reproducibility of point contacts can be 
realized in technology with application of 
nanopowders. 

Proposed model allows optimize 
characteristics of thermoelectric materials 
composed of spherical nanoparticles with 
quantum point contacts in dependence on 
particle diameter, physical point contact 
diameter and value of Fermi energy.  
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