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Abstract  

Examples for thermoelectric 
multiphysics finite element modeling are 
presented, where in addition to the 
thermoelectric field equations, thermo-
mechanic effects are calculated 
simultaneously. The temperature 
dependency and anisotropy of the material 
properties can be respected. Thus, detailed 
modeling of thermoelectric systems are 
possible. The model is an extended version 
of a previously published model [1].  
Introduction 

The thermoelectric coupled field 
equations for the temperature T and electric 
potential V can be written for steady state 
calculations as  
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(2) 
where the material properties α, σ and λ 

denote the thermopower (Seebeck-
coefficient), the electric and the thermal 
conductivity, respectively. Usually those 
material properties depend on the 
temperature and may be unisotropic. Here 
only isotropic material properties are used 
at constant material parameters. The above 
equations can be derived from the coupled 
equations in [2] or the literature cited 
therein [3]. 
The FEA-Model 

Only a view FEA-Programs can handle 
thermoelectric effects, like for example 
ANSYS version 9 and higher [2]. This 
paper shows an implementation of 
thermoelectricity into COMSOL 
Multiphysics, wich allows solving of 
common arbitrary partial differential 

equations (PDEs) of the field variable u on 
a one to three dimensional region Ω. Two 
PDE modes can be used: The “Coefficient-
Form” and the “General Form”. In the more 
didactical “Coefficient Form” PDE 
application mode, the program allows the 
definition of the coefficients for the 
following PDE:  
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(3) 
Equation (3) follows the notation of the 

COMSOL- Multiphysics documentation. 
Please notice that some symbols from the 
equations (1) - (2) occur also here, but with 
a different meaning. The first line describes 
the PDE, the second and third lines define 
the coefficients for the generalized 
Neumann boundary condition and the 
Dirichlet boundary condition on the surface 
∂Ω of the region Ω. The thermoelectric 
field equations can now be transformed into 
the “coefficient form” as follows. 

With the vector valued field variable u, 
consisting of temperature T and voltage V, 
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 the coefficient c in (3) is 
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and f is 

( )


















 ∇∇+∇

=
0

2
VTV

f
ασ  

(6) 

O-27-1 



The other coefficients in equation (3) are 
zero for static calculations. 

For transient calculations, capacitive 
influences have to be respected. Mostly it is 
sufficient to consider only the thermal 
capacity (heat capacity C, density ρ). Then 
d in equation (3) is 
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(7) 
For fast transient calculations, also 

electric capacities can be included by 
setting γ in equation (3) to 
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(8) 
Here ε is the dielectric permittivity.  
For the implementation of the PDE 

coefficients into COMSOL the notation for 
deviations is  
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(9) 
Thermomechanic allpication modes can 

be combined with this thermoelectric model 
in order to study thermal expansion and 
strain at various temperatures. In this paper, 
the "solid, stress, strain" application mode 
of the MEMS-Module was taken. The 
calculations were made with COMSOL 3.4.  
Dimensions and material properties 

The following examples show results of 
calculations for a p-n thermocouple, 
contacted by copper electrodes on a 
alumina substrate, as shown in figure 1. The 
dimensions of the thermoelectric leg are 
1.5x1.5x10mm³ with 0.5mm spacing. The 
electrodes are made from 0.2mm copper, 
the thickness of the alumina substratre is 
0.5mm. The left side is kept at 0°C and is 
mechanically fixed. The current density J is 
applied at the upper left electrode, the lower 
left electrode is grounded. 

For reasons of simplicity, neither 
temperature dependency of the material 

data, nor transient or unisotropic 
calculations were taken into account. 
Examples for temperature dependent 
materials and transient calculations with 
this FEA-model can be found in [1].  

The thermoelectric material data are 
from [2] and are shown in table 1, they are 
typical values for bismuth telluride. The 
thermal conductivity of the alumina 
substrate was set to 29W/m/K.  

 
Figure 1: The thermocouple example 

consists of two 1.5x1.5x10mm³ legs. They 
are contacted with copper on a alumina 
substrate. The left side is kept at 0°C and 
mechanically fixed. The current density J 
is applied at the upper left electrode, the 
lower electrode is grounded.  

 
Table 1: Thermoelectric material 

properties for a typical bismuth telluride 
based material, from [2] 
  Thermoelectric 

Material 
Electrode 
(Copper) 

Seebeck 
Coefficient 

α,  
V/K 

p: 200e-6 
n: -200e-6 

6.5e-6 

Electric 
conductivity 

σ,  
S/m 

1.1e5 5.9e8 

Thermal 
conductivity 

λ, 
W/m/K 

1.6 350 

 
The elastic moduli and thermal 

expansion coefficients for bismuth-telluride 
are are taken from [4] and are listed in table 
2. The mechanic properties for copper and 
alumina are taken from the COMSOL 
material library., Young's modulus was 
110GPa for copper and 300 GPa for 
alumina, Poissons ratio was 0.35 for copper 
and 0.22 for alumina. The temperature 
expansion coefficient was 17 10-6/K for 
copper and 8 10-6/K for alumina. Reference 
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Temperature for the thermal expansion was 
0°C. 
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Figure 2: The thermal expansion of the thermocouple for 1A and 2A current. The 

initial geometry is shown as a black wireframe, the deformed frame is red and filled 
with temperature coded colors. At maximum cooling near 1A, the module shrinks about 
5 microns (above). At 2A, the module is thermally expanded although it is still cooling. 

 
Table 2: elastic material properties cij 

in 1011dyn/cm² at 280K and temperature 
expansion coefficient ai in 10-6/K of 
Bi2Te3 at 300K, from [4] 
 c11  c66  c33  c44  c13  c14 
6.847 2.335 4.768 2.738 2.704 1.325 
      

ax ay az 
21.3 14.4 14.4 

 
Calculation results 
To solve the PDEs, the "parametric 

segregated solver" in COMSOL was used. 
The current was varied from 0.001 - 2A. 
Figure 2 shows the result for two currents, 
1A above and 2A below. The original 
geometry is shown as a black wireframe, 
the displacemend by thermal expansion is 

indicated by the red wireframe, filled with 
temperature coded color.  

 
Figure 3: The calculated cold side 

temperature versus current shows a 
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maximum temperature difference of 
about 62°C. 
 

At maximum cooling near 1A, the 
module shrinks about 5 microns (above). At 
2A, the module is thermally expanded 
although it is still cooling. 

Figure 3 shows the calculated cold side 
temperature versus the applied current for 
an operation as a peltier module. About 
62°C temperature difference can be 
achieved at 1 A. 

 
Figure 4: thermal expansion of the 

module in x-direction  
The according change of the module 

length in x-direction is shown in figure 4. 
At low currents, the module shrinks due to 
the cooling. With higher temperatures the 
module expands. Minimum size and 
maximum cooling are not at the same 
current.  

 
Figure 5: A doubling of the resistivity 

of the lower thermoelectric leg leads to 
higher temperatures and thus to 
asymmetric thermal expansion. Other 
parameters like in figure 2, the current is 
1.5A.  

With this model, thermoelectric and 
thermomechanic effects can be simulated 
simultaneously, and thus enabling 
thermomechanic studies of thermoelectric 
effects. As an example the effect of a 
changed electric resistivity is shown in the 
figures 5 and 6. The electric resistivity of 
the lower thermoelectric leg was doubled. 
Figure 5 shows the calculated temperature 
distribution and thermal expansion for a 
current of 1.5A. The different resistivities 
of the thermoelectric legs lead to an 
assymetric temperature distribution in the 
legs, causing a bending of them due to the 
thermal expansion. Figure 6 shows the von 
Mises stress within the module as a slice 
Plot. a maximum stress of about 37MPa 
was calculated.  
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Figure 6: Von Mises stress in the 

asymetrically strained module of figure 5 
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