Chemical design of layered cobaltites for thermoelectric applications

Berthelot R.¹, Pollet M.¹, Carlier D.¹, Decourt R.¹, Doumerc J.-P.¹, Delmas C.¹ and Plissonnier M.²

¹ Université de Bordeaux, ICMCB, 87 avenue du Dr. Schweitzer, F-33608 Pessac, France ² CEA-Grenoble, DRT-LITEN, 17, rue des Martyrs, 38054 Grenoble, France Contact author : pollet@icmcb-bordeaux.cnrs.fr

Abstract

Mixed layered cobaltites Li_xNa_yCoO₂ have been prepared and characterized. Preliminary results on physical properties are presented and discussed.

Introduction

Layered cobaltites $A_x CoO_2$ have been intensively studied as cathode materials [1,2]. More than 20 years ago, a positive thermoelectric power of 80 µV.K⁻¹ and a low electrical resistivity of 3 mΩ.cm at 300 K were reported for a powder sample Na_{0.7}CoO₂ [1,2]. More recently an in-plane power factor value close to that of Bi₂Te₃ at 300 K has been reported for single crystals of the same composition [3] triggering a renewed interest for these materials.

Good thermoelectric properties require conflicting features: a large Seebeck coefficient (α) , а small electrical low thermal resistivity (ρ) and a conductivity (κ), in order to improve the figure of merit $Z \cdot T = \alpha^2 / \rho \kappa$. Two contributions occur in the thermal conductivity, an electronic contribution (κ_e) and a phononic contribution (κ_{nh}) . As κ_e is directly related to the electrical resistivity by the Wiedemann-Franz law, it cannot be significantly decreased without increasing ρ . Hence dropping κ_{ph} is required in order to improve $Z \cdot T$. This approach has been already applied to systems like skutterudites or clathrates and our purpose is to extend it to cobaltites. Our strategy is to limit the phonon mean free path through introducing a random mixture of elements in the alkali layers. Our study is focused on the mixed layered cobaltite $Li_xNa_yCoO_2$ for which promising thermoelectric properties were recently reported [4-5]. In the present paper after briefly reviewing the state of the art concerning these cobaltites, synthesis and preliminary Seebeck and electrical resistivity measurements are presented and discussed. Thermal conductivity will be considered in a future work.

State of the art of the $Li_xNa_yCoO_2$ system

Balsys et al. [6] reported synthesis of Li_{0.43}Na_{0.36}CoO₂ using a two-step solid state method from an equimolecular mixture of Na_{0.7}CoO₂ and LiCoO₂ heated in air at 1123 K for 4 days. More recently Ren et al. [4] reported the direct synthesis of Li_{0.48}Na₀₃₆CoO₂ from Li₂CO₃, Na₂CO₃ and Co₃O₄ (30 hours at 1173 K under oxygen flow followed by annealing at 673 K for one day). Ren et al. also reported interesting thermoelectric properties for a polycrystalline sample at room temperature: $\alpha = 180 \ \mu V.K^{-1}$, $\rho = 20 \ m\Omega.cm$ and $\kappa=2$ W.m⁻¹.K⁻¹, which leads to a ZT of 0.02. Last year Bos et al. [5] studied magnetic and thermoelectric properties of several materials prepared from deintercalation of sodium or lithium from an initial thermodynamical stable phase $Li_{0.41}Na_{0.31}CoO_2$.

All the authors have reported the same crystallographic structure for this mixed cobaltite. It consists of stacking of layers of edge-sharing CoO_6 octahedra between which the alkali ions are inserted. The alkali ions can accommodate two main types of crystallographic sites: either octahedral (O) in Li_xCoO₂ or prismatic (P) in both Na_x- and K_xCoO₂. The oxygen packing also differs in the number of

sheets within the pseudo-hexagonal unit cell. The O3 phase is isostructural with α -NaFeO₂ and AO₆ octahedra are sharing only edges with CoO₆ octahedra. In P3, AO₆ prisms are alternatively sharing edges and faces with lower and upper CoO₆ octahedra. The P2 system features two distinct types of AO₆ prisms: the first one is sharing only faces and the second one is sharing only edges with CoO₆ octahedra.

Figure1: Crystal structure of Li_xNa_yCoO₂.

In the Li/Na mixed cobaltites crystallographic features of lithium and sodium cobaltites are combined. Interslabs between the sheets of edge sharing CoO₆ octahedra are alternatively filled by sodium or lithium layers. Figure 1 shows the corresponding structure.

Preparation and characterization

According to previous works it is very challenging to obtain a pure phase. Thus Balsys *et al.* noticed that $LiCoO_2$ remained in the final product. Ren *et al.* sometimes observed $LiCoO_2$ or Na_xCoO_2 impurities. Taking into accounts these difficulties, we tuned the condition of synthesis in order to improve the phase purity. Our best results

were obtained in grounding together $LiCoO_2$ and $Na_{0.7}CoO_2$ in the nominal composition of $Li_{0.42}Na_{0.41}CoO_2$. Manipulations are made in an argon-filled glove box. The mixture is then put in a gold tube that is the sealed and heated at 1193 K during 15 hours in a pre-heated furnace. The tube is finally quenched in water and the product is stored under dry argon atmosphere to prevent moisture contamination.

XRD patterns were recorded with a Panalytical X'Pert Pro powder diffractometer in the Bragg-Brentano geometry using Co K_{α} radiations. All the XRD peaks can be indexed using a hexagonal cell and the P6₃mc space group. Refined lattice parameters are a=2.829 Å and c=20.286 Å, which is in good agreement with previous works.

The measurements of thermopower and electrical resistivity were carried out on cylindered pellets with compactness close 89%. Electrical DC-conductivity to measurements were performed using a four probe method in the 4-300 K temperature Thermoelectric range. power measurements were carried out with a made equipment previously home described [7].

Results and discussions

The temperature dependences of the Seebeck coefficient and of the electrical resistivity are compared with the previous results of Ren et al. in Figure 2. The thermal activation of the electrical conductivity denotes a semi-conductor behavior, either of band-type with a thermally activated carrier creation, or a hopping-type semi-conductor with activated carrier mobility. At low coefficient Seebeck temperature. the increases and exhibits a maximum around 200 K then it very slightly decreases. This behavior significantly differs that reported by Ren et al. (Fig.2). It supports the second hypothesis at least for 0<T<200 K. The decrease of the thermoelectric power above 200 K could result from a tiny increase of charge carrier concentration whose the origin is not still explained. Assuming an average oxidation state of cobalt from nominal composition, Heikes formula leads to thermoelectric power values of either 196 or 136 μ V.K⁻¹ depending whether spin degeneracy is taken into account or not. As the experimental value is close to 150 μ V.K⁻¹, no conclusion about the role spin degeneracy can be definitely drawn.

Figure 2: Temperature dependence of Seebeck coefficient and electrical resistivity

Room temperature values of Seebeck coefficient ($\approx 150 \ \mu V.K^{-1}$) and electrical resistivity ($\approx 30 \ m\Omega.cm$) lead to a power factor α^2/ρ close to $7.5 \times 10^{-2} \ W.m^{-1}.K^{-2}$.

Conclusions and outlooks

Since Terasaki focused on the promising thermoelectric properties of $Na_{0.7}CoO_2$, other layered thermoelectric cobaltites have been reported such as misfit compounds and the Li/Na mixed layered cobaltites discussed in this paper. Previous works pointed out the difficulties to obtain this phase pure. By tuning all the synthesis parameters, we obtained samples with good purity which is required for an accurate physical characterization. Li_{0.42}Na_{0.41} exhibits a high thermoelectric power of 150 μ V.K⁻¹. Keeping in mind that dropping the phononic part of the thermal conductivity is of major importance to improve the figure of merit, the present study should be considered as а preliminary step towards further studies. Actually, many ion exchanges are possible in layered cobaltites that could lead to further improvement of the thermoelectric properties.

Acknowledgements

This study was supported by the Centre National de la Recherche Scientifique (CNRS), the Commissariat à l'Energie Atomique (CEA) and the French National Research Agency (ANR) in the scope of the OCTE project.

References

[1] Molenda J., Delmas C., Hagenmuller P., *Solid State Ion.*, **9-10**, 431 (1983)

[2] Molenda J., Delmas C., Dordor P., Stoklosa A., *Solid State Ion.* **12**, 473 (1984)

[3] Terasaki I., Sasago Y., Uchinokura K., *Phys. Rev. B* **56**, 12685 (1997)

[4] Ren Z., Shen J., Jiang S., Chen X.-Y.,

Feng C., Xu Z.-A., Cao G.-H., J. Phys.:

Cond. Mat. 18, 379 (2006).

[5] Bos J.W.G., Hertz J.T., Morosan E., Cava R.J., *J. Solid State Chem.* **180**, 3211 (2007)

[6] Balsys R.J., Davis R.L., *Solid State Ion.* **69**, 69 (1994)

[7] Dordor P., Marquestaut E., Villeneuve

G., Rev. Phys. App. 15, 1607 (1980)