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Abstract 

The results of theoretical estimations of characteristics 
of thermoelectric materials composed of nanometer particles 
that are connected with each other through point contacts are 
presented in this paper. The goal of conducted calculations is 
the verification of possibility of the increasing of 
thermoelectric material efficiency     Z = α2·σ/(κel + κph), 
where α – Seebeck coefficient, σ – electric conductivity, κel 
– heat conductivity associated with electrons and κph – heat 
conductivity associated with phonons. Possibility of Z 
increase is based on very simple idea of drastic κph decrease 
caused by the presence of nanometer gaps between separate 
thermoelectric particles that stop free photon propagation in 
the sample and the conservation of α and σ thanks to the 
tunneling of electrons through these gaps. Results of 
calculations are discussed. 

 
Introduction 

One of the first attempts to estimate possibility of  
increasing the figure of merit of the flat thermoelectric 
vacuum structures (TVS), i.e. the structures composed of 
semiconductor layers separated by very thin vacuum gaps 
was made in 1969 [1]. Term “vacuum” can be used here so 
as the nanometer gap width is much less than the free path of 
molecules in gases.   The thermoelectric figure of merit is 
determined as Z = α2·σ/(κel + κph), where α is the Seebeck 
coefficient,  σ is the electrical conductivity, and κel and κph 
are the electron and phonon thermal conductivities. 
Possibility of Z increase is based on very simple idea of 
drastic κph decrease caused by the presence of nanometer 
gaps between separate thermoelectric layers that stop free 
photon propagation in the sample and with the conservation 
of α and σ thanks to the tunneling of electrons through these 
gaps. It was shown that the Seebeck coefficient in such 
structure could be more than in the bulk thermoelectric in 
definite range of Fermi level that should lead to Z increase 
too. However there were not taken into account the 
thermoelectric material characteristics as functions of Fermi 
energy and influence the transmission coefficient of electron 
tunneling through vacuum potential barrier.  

Now in connection with rapid development of 
nanotechnologies the idea of TVS creation should be raised 
up and discussed once more. One of the stimulative reasons 
for conducting present theoretical estimations was the 
appearance of high efficient installation for producing 
inexpensive nonopowders in Scientific and Research 
Institute of Vacuum Technique. We can anticipate that TVSs 
made of nanopowders should have better basic 
thermoelectric characteristics than ones in bulk 
thermoelectric materials.  

 

Estimation of vacuum gap characteristics  
Here we consider the model of the thermoelectric 

vacuum structure (TVS) composed of two flat thermoelectric 
plates of thickness D separated by vacuum gap of width d. 
We assume that thermoelectric material in plates have 
simple parabolic band structure, electron energy is counted 
off from the bottom of the conduction band, electrons can 
pass through the gap thanks to tunneling effect and phonon 
thermal conductivity in vacuum gap is absent. 

The electric and energy flux densities of electrons 
through vacuum gap between two semi-infinite 
thermoelectric layers ere given by 
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where Vx – x-component of electron velocity in direction 
perpendicular to thermoelectric surface, fc and fh – Fermi-
Dirac distribution functions in cold left and hot right plates 
respectively, qe – electron charge, m – effective electron 
mass, hp – Plank constant, T(Ex) – transmission coefficient 
through potential barrier, dp3=dpxdpydpz, px, py and pz - 
components of electron momentum, Vx = px/m, E = px

2/2m, 
Et = (px

2+pz
2)/2m and E = Ex + Et. 

 Fermi-Dirac distribution functions in thermoelectric 
plates are given by 
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where Ef – Fermi level, T and T+∆T – absolute temperature 
at cold and hot plates respectively, U – potential difference 
between plates, Kb – Boltzmann constant.  

Introducing dimensionless variables x=Ex/KbT, t=Et/ KbT 
and η= Ef /KbT (reduced Fermi level), equations (1) and (2) 
can be written as 
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We introduce functions M0(η), M1(η) and M2(η) by 
integrals:  
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Expanding (fc-fh) in series on small parameters ∆T/T and 
qeVd/KbT and leaving only the first expansion terms, one can 
derive equations of the Seebeck coefficient, electric and 
thermal conductivities. The Seebeck coefficient αs(η) = 
U/∆T is derived from (6) at condition js(η) = 0: 
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electric conductivity of gap unit area σs(η) = js(η)/V is 
derived from (6) at conditions ∆T=0 and V→0: 
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thermal conductivity of gap unit area κs(η) = qs(η)/∆T is 
derived from (6) and (7) at conditions js(η) = 0 and ∆T → 0: 
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Integrals (8) – (9) drastically depend on the 
transmission coefficient of electron through vacuum gap 
T(E,d). In general T(E,d) can be presented as  
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where W(d) – effective barrier height,  Wo – barrier height 
counted off from bottom of conduction band and 
approximately equal to work function of semiconductor. The 
second term in (13) takes into account the mirror forces that 
lower barrier height. T(E,d) decreased very rapidly with 

increase of d,  approximately by 5 orders of value at d 
increase on 0.5 nm. The integrand functions in equations (6)-
(8) have the sharp maximum at electron energy about 0.5-0.8 
KbT. The optimal value of dopt at which the transmission 
coefficient reaches  maximum value is derived from 
equation (13) at W(d) = 0. So dopt=0.6 nm for Wo=4 eV and 
dopt=2.4 nm for Wo=1 eV. 

 
Estimation of thermoelectric plates characteristics  

The basic characteristics of semiconductors with any 
level of generation are given by following equations [2]:  
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where α(η,r) – the Seebeck coefficient, σe(η,r) – electric 
conductivity, κe(η,r) – electron component of thermal 
conductivity, κph - phonon component of thermal 
conductivity, κ(η,r) = κe(η,r) + κph – total thermal 
conductivity, Z(η,r) – the figure of merit, and dimensionless 
functions αo(η,r), σo(η,r), L(η,r) and F(η,r) are given by: 
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where Γ(r) – Gamma function, r – exponent of electron 
energy in the relaxation time τ(E) = τo(r)·Er, τo(r) – constant 
different for different mechanisms of the scattering of 
electrons, r = – l/2 for electron scattering on thermal 
phonons and r = 3 /2 for electron scattering on ionized atoms 
of impurities.  



 
Estimation of flat TVSs effective characteristics 

It is evident that for calculation of basic characteristics 
of flat thermoelectric vacuum structure it is enough to 
consider only two semiconductor plates with vacuum gap 
between them connected in a series. In this case the effective 
characteristics of TVSs can be easily derived:  
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For more easy comparison and analysis of results of 
calculations we introduce dimensionless characteristics that 
are determined as ratio of TVS effective characteristics to 
corresponding bulk thermoelectric characteristics by the 
following equations γ(η,D,d): 
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where γα(η,D,d), γσ(η,D,d), γκ(η,D,d) and γz(η,D,d) 
correspond to the Seebeck coefficient, electric and thermal 
conductivity and the figure of merit respectively. 
  
Results of calculations of TVSs 

The calculations were conducted for two variants of the 
relaxation time, for scattering electrons on ionized atoms of 
impurities (r=3/2) and on thermal phonons (r= – 1.2).  

We used the following characteristics of thermoelectric 
material: effective electron mass m = 0.45mo, constants in 
the relaxation time τo(–1/2) = 5.15·10-22 s·J0.5 and τo(3/2) = 
2.1·1017 s·J-1.5 for ion concentration of Ni=1023 m-3, lattice 
thermal conductivity κph = 1 W/m·K, work function Wo=4 
eV. At the room temperature T=300 K and for scattering 
electrons on thermal phonons the basic characteristics of 
thermoelectric material had the following values: the 
Seebeck coefficient α=2·10-4 V/K, electric and thermal 
conductivity σe=9.8·104 1/Ohm·m and κ=1.48 W/m·K, 
respectively, and the figure of merit Z=2.9·10-3 1/K. These 
characteristics are very close to characteristics of alloy of 

bismuth telluride (Bi2Te3). 
Relative characteristics γα(η,D,d), γσ(η,D,d), γκ(η,D,d) 

and γz(η,D,d) as functions of reduced Fermi level η = 
Ef/KbT, thickness of thermoelectric layers D in nm and width 
of vacuum gap d in nm are presented in figures 1-5. Low 
indexes in expressions γ(η,D,d) “i” and ”p” correspond to 
scattering electrons on ionized atoms of impurities and 
thermal phonons respectively.  

Calculations show that effective Seebeck coefficient 
decreases and effective electric and thermal conductivities 
increase with increase of reduced Fermi level η.  
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Fig. 1. Dependence γα_i(η,D,d) and γα_p(η,D,d) on reduced Fermi 
level η for d=0.6 nm and D = 100 and 20 nm. 

Fig. 1 shows that the effective Seebeck coefficient is 
equal to the Seebeck coefficient of bulk material 
γα_p(η,D,d)=1 for scattering electrons on thermal phonons 
so as coefficients have the same dependence on η.  In 
general, αeff(η) is lower α(η) for scattering on ions and 
decreases with increase η.   
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Fig. 2. Dependance γσ_i(η,D,d) and γσ_p(η,D,d) on reduced Fermi 
level η for d=0.6 nm and D = 100 and 20 nm. 

Fig. 2 shows that the relative electric conductivities 
γσ_i(η,D,d) and γσ_p(η,D,d) decrease droningly with η 
increase. 

At the same time the relative thermal conductivities 
γκ_i(η,D,d) and γκ_p(η,D,d) increase with η increase, and 
γκ_i(η,D,d) > γκ_p(η,D,d) for η<2 and γκ_i(η,D,d) <  



γκ_p(η,D,d) for η>2. It is interesting that the decrease of 
relative thermal conductivity is less than the decrease of 
relative electric conductivity in several times.  
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Fig. 3. Dependence γκ_i(η,D,d) and γκ_p(η,D,d) on reduced Fermi 
level η for d=0.6 nm and D = 100 and 20 nm. 
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The relative figure of merit γz_i(η,D,d) and 
γz_p(η,D,d) decrease droningly with η increase. But if the 
γz_p(η,D,d)>1 in all range of variable η , then γz_i(η,D,d)>1 
for η<1.3 and γz_i(η,D,d)<1 for η>1.3, i.e. Zeff_i of TVS is 
lower than Z of bulk thermoelectric material for η>1.3.  

Fig. 5 shows that the relative figure of merit 
γz_i(η,D,d) and γz_p(η,D,d) increase with the decrease of 
thickness of thermoelectric layers D. 

The TVS characteristics strongly depend on width of 
vacuum gap d.  Zeff(η,D,d) increases and σeff(η,D,d) 
drastically decreases with d increase. In order to have TVS 
with electric conductivity comparable with electric 
conductivity of bulk material and Zeff>Z, d should have 
value close to dopt. The gap width dopt is inversely 
proportional to the work function Wo. Therefore it is very 
important to use TE material or coating materials with low 
work function.  

Flat TVS is a good model for calculations of basic 
characteristics of other similar structures. Real materials 
with thermoelectric vacuum structure can be produced from 
powders of different semiconductors. As a first 
approximation we can imagine powder thermoelectric 
material as closed-packed particles of spherical form that 
have a point contacts with each other. Then effective contact 
area for tunneling current can be evaluated as   
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and effective unit area of sample for tunneling current can be 
presented as 
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Taking γs=0.1, we have maximum particle diameter 
Dmax=9 nm for dopt=0.6 nm (Wo=4 eV) and Dmax=36 nm for 
dopt=2.4 nm (Wo=1 eV). 

It is evident that energy structure of semiconductor 
particles drastically changes with decrease of its diameter, 
besides particle surface conditions begin to play very 
important role in processes of electron tunneling. Estimation 
of influence of energy structure change and particle surface 
conditions on properties of nanopowder thermoelectric 
materials should be made in the nearest future. 

Conducted calculations show that thermoelectric 
nanopowder materials made of weakly degenerated 
semiconductor materials (η = –2÷0) should have the electric 
conductivity on 1-2 order of value lower and the figure of 
merit in several times higher than ones in bulk materials and 
that these materials are promising in broad range of 
applications. 

 
Conclusions 

Flat thermoelectric vacuum structures (TVSs) have the 
following characteristics:  
- the figure of merit exceeds by 3-7 times and effective 
electric conductivity is on 1-2 orders of value less than the 
same characteristics of bulk material in practically 
interesting range of Fermi level (η= –2÷0), 
- the figure of merit increases and electric conductivity  



decreases with decrease of thermoelectric plate thickness, 
- optimum width of vacuum gap at which figure of merit and 
electric conductivity reach its maximums increases  from 0.6 
to 2.4 nm for decrease of electron work function from 4 to 1 
eV.  

For materials made of nanopowders there exists the 
maximum particle diameter in range of 10-30 nm at which 
the figure of merit and electric conductivity are close to the 
same characteristics of flat TVSs. 

The figure of merit of laminated, powder and porous 
thermoelectric materials can be significantly higher than the 
same characteristics of bulk materials. 

Made estimations show the necessity of carrying out 
new calculations of characteristics of nanopowder materials 
taking into account the change of energy structure and 
influence of surface state in nanoparticles, as well as 
conduction of new experiments with thermoelectric 
nanopowders. 

From the practical point of view the increase of figure 
of merit in 2-4 times signifies the broad expansion of TE 
device and system applications, lets them to compete with 
and replace the existing compressor coolers, freezers and air 
conditioners as well as gives unique opportunities to develop 
high efficiency solid-state power generators using the waste 
heat of diesel engines, metallurgical works and thermal 
power stations in temperature range of 400-900 K. 
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