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Abstract

The calculations of mobility and the thermoelectric figure
of merit in multiple-quantum-well (MQW) structures have
been performed for the cases of different scattering mecha-
nisms: acoustical phonon scattering, scattering by short-range
impurity potential and polar scattering by optical phonons. In
the first two cases, when the scattering probability is inde-
pendent of the electron wave vector change Ak during the
scattering aci, the analytical expressions for mobility and the
thermoelectric figure of merit have been obtained at the as-
sumptions of infinite barriers height and standard dispersion
law of electrons. The comparison with the case of polar scat-
tering by optical phonons, when the scattering probability is

proportional to Ak™>, has shown that the enhancing of the
figure of merit is possible due to the size quantum effect only
if the scattering probability decreases with increasing of Ak .

Introduction

The pioneering works of Hicks and Dresselhaus [1-3]
made a start on intensive study of the thermoelectric effects in
quantum wells and superlattices. They performed the calcula-
tions and estimations of the thermoelectric figure of merit Z
of layered structure with quantum wells and showed that the
thermoelectric efficiency in such structures could be increased
by a factor of 2 or 3 over the bulk value due to the rise of the
density of states in quantum wells, The calculations in [1-3]
were based on the constant relaxation time (CRTA) approxi-
mation, in which the relaxation time was assumed to be inde-
pendent on both carrier energy and thickness of the quantum
wella. In [4-6] the numerical calculations of the figure of
merit were perforined taking into account the variation of the
relaxation time with the well thickness for different scattering
mechanisms and complex charge carrier dispersion relations.
These calculations showed that the rise of the density of states
of electrons in quantum wells led in some cases to decrease of
mobility and, hence, to diminution of the thermoelectric effi-
ciency in comparison with the CRTA approximation,

In the present paper we have performed analytical calcula-
tions of relaxation time and the thermoelectric figure of merit
for the cases of scattering by acoustical phonons, short-range
impurity potential and polar scattering by optical phonons.’ In
order to compare the dependencies of relaxation time and
thermoelectric efficiency on the well width at different scat-
tering mechanisms and to achieve plain results the calcula-

! The results of the calculations for the cases of acoustical
scattering and scattering by short-range impurity potential
were published in [7] and the results concerning polar optical
scatiering have been revised with more accurate examination
of the thin quantum well limit,

tions have been performed for the case of infinite barrier
height and isotropic parabolic approximation for dispersion
law of electrons. In the case of polar scattering the numerical
estimations of the thermoelectric efficiency have been per-
formed, and the results of these estimations have been com-
pared with the ones obtained in the same assumption as was
made in [1], i.e. using bulk value for the relaxation time in
MQW structures.

Relaxation Time for the Cases of Acoustic Scattering and
Polar Scattering by Optical Phonons

The wave function of electron localized inside the quan-
tum well (QW) with mﬁmtely high barriers can be written as
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where K is the wave vector of an electron in the QW plane;
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the radius-vector r has two components: p inside the QW

plane and z in the direction perpendicular to the plane; and a

and S are thickness and area of the QW layer respectively.
The matrix element of scattering of electron from state

with the wave vector in the plane of QW ky to the state k'

accompanied with the absorption or emission of phonon with
the wave vector q and corresponding change of phonon occu-

pation number from Ny to N,' has the usual form:
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where U(r) is the potential energy of interaction between

electron and acoustic or optical phonon.

The scattering of electrons by acoustic phonons has been
considered in the deformation potential approximation as-
suming that the phonon spectrum does not change considera-
bly when we perform the transition from the bulk crystal to
MQW structure, i.e. considering scattering of electrons by
bulk acoustic phonons. In this case the potential energy of
interaction between electrons and acoustic phonons can be
expressed as [8]:
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where g; is the deformation-potential constant; u(r) is the

displacement of the point r in the crystal caused by acoustic
lattice vibrations in the continual approximation; N is the

number of unit cells in the crystal volume; M is the unit-cell
mass; ¢ is the wave vector of a phonon; and ag are the com-

plex normal coordinates.



The optical phonons are more sensitive to inhomogeneities
arising in layered structures with quantum wells. Calculations
of optical-phonon spectra in MQW structures were performed
in a number of works (see, for example, review [9] and the
references therein). A comparison of charge-carrier scattering
by optical phonons in MQW structures [10, 11], described
with the use of optical-phonon spectra of bulk type and quan-
tized optical-phonon spectra, showed that the differences
between the obtained results are not large. Therefore, in our
calculations we have considered the polar scattering of elec-
trons by bulk optical phonons. In this case using continual
approximation the potential energy of interaction between
electrons and optical phonons can be written as [8]:
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Here, ¥ =S g is the volume of quantum well, o; is the high-
est frequency of longitudinal optical phonons and
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where g, and g are the high-frequency and static dielectric

constants respectively.

The calculations of matrix elements (2) for the cases of
acoustic and optical phonons are rather similar. They consist
of calculation of matrix element over phonon and electron

coordinates. The matrix elements of a, and aq* are not equal

to zero only for absorption and emission of phonons respec-
tively

(Ny'lag | Ng)= BN /20, forNi'=N, -1,  (5)

(Nylla, | Ng) = JaNy +1)/20, for Ng'= Ny +1, (6)

and

where ®, is the frequency of phonon with the wave vectorq.

At the temperatures sufficiently higher than the Debye
temperature ®,, the phonon occupation numbers are much

greater then  unity and can  be  expressed
as Ny = Ny +1=kyT/hay, ie. for acoustic phonons
Nyl _ kT ™
ho, hvyg
and for optical phonons
N, < fal kT ®
ho, ho,

In the equation (7) v; is the velocity of sound.
The integration over coordinate p yields the delta func-

tions, which express the momentum conservation law in the
plane of the layer:
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where q is the projection of the phonon wave vector q to

the plane of the layer; signs “ & * correspond to the absorption
and emission of phonen respectively.
The integration over coordinate z gives the form-factor

X gin(m x)
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where g, is the component of phonon wave vector q in the

mxil-x

direction of z - axisandx =agq, /27 .

Gathering together equations (2), (7)-(10) the square of the
modulus of the matrix element (2) can be written as
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where the M*(g) are the bulk matrix elements of scattering,

that are defined at the high-temperature limit for scattering by
acoustic phonons as [8]
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and for polar scattering by optical phonons as
2nel by T 1
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The scattering by both acoustic and optical phonons at
T >>0@p is elastic and the relaxation time in MQW-structure
can be written as
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where 3§ -functions allow for the energy conservation law; and
g(ky) is the energy of electron corresponding to the motion in

the plane of the layer.
Replacing summation by integration in (14) leads to the
following expression for t,p,
2y
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where m" is the effective mass of electron.

As the bulk matrix element for the case of acoustic scat-
tering (12) is independent of g , the integration in (15) can be
performed analytically. The resulting expression for the re-
laxation time can be represented in the following form

» (15)
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where g7p =m 2 m‘iz) is the two-dimensional density of

states, and the quantity X can be obtained from (10) by
means of integration over ¢,
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The equation (16) for relaxation time agrees with that pre-
viously reported in [12] and should be compared with the
corresponding relaxation time for a bulk crystal [8]
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where gip =m k/27 R is the density of states in a bulk

crystal.

The comparison of equations (16) and (18) has shown that
the relaxation time in MQW structure at the acoustic scatter-
ing is less than in bulk crystal and decreases proportional to
the layer thickness a
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In the case of polar scattering the matrix element (13) is
inversely proportional to the square of the phonon wave vec-
torg . The expression for relaxation time in this case has the

similar form as for acoustic scattering (16)
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but in the equation (20) the quantity X becomes a function of
electron wave vector
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where « = ak, /=, and the integral /() is defined as follows
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The relaxation time in the bulk crystal at polar scattering
can be obtained from (18), where M,.(gq) should be replaced
with the matrix element (13).

The comparison of the relaxation times in the MQW-
structure and in the bulk crystal for the case of polar scattering
by optical phonons can be represented in the following form
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The integral /() in this equation can not be expressed in

analytical form. In the case of large values of # it approaches
the unity, and at the small » it can be approximated
by [{u) =~ 4u/3 . As u is proportional to the thickness of lay-

ers a , the relaxation time TE‘E') decreases proportional to @ in
the case of relatively thick quantum wells as for the acoustic
scattering. But in the case of thin QW layers ‘rf,_‘j‘;” becomes
independent of layer thickness and approaches to the
value 155" /2 . Thus in the case of thin QW layers at the polar
scattering the suppositions made by Hicks and Dresselhaus [1-
3] becomes valid, taking into account, however, that 'r(”"”)

two times smaller than t%") )

Relaxation Time for the Case of Scattering by Short-range
Impurity Potential

The scattering by short-range impurity potential is impor-
tant in many thermoelectric materials with high permittivity
such as PbTe [13] when the Coulomb scattering is ineffective,
therefore the scattering occurs at the inner part of the impurity

potential. It can be assumed that the impurity potential U(r)
has an effective radius », , which is of the order of the intera-
tomic distance. In order to calculate the matrix element of

scattering in this case we have used the Bloch wave function
of electron in quantum well
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Then the matrix element of scattering by the impurity atom
residing at the lattice site r;can be written in the following
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It is convenient to make a substitution r = r'+r,. Then us-
ing periodicity of the Bloch amplitude #, (r) =, ('), equa-
tion {25) can be expressed as
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Taking into account that the short-range potential differs

] (26

from zero in a small region 3, ~ r03 the domain of integration
in {25) can be replaced with Q, . If we consider scattering of
electrons with the small wave vectors, we have kr'<<1 for
the radius vectors r' in the region Q) . Then all the exponen-
tial functions under the integral in (26) are close to unity and
sine can be replaced withsin{rz, /a). In addition, for small
values of the wave vector, the dispersion law of electrons is
almost parabolic; therefore, in the same approximation, the
Bloch amplitudes u, (r') can be assumed to depend on k
weakly and can be replaced with u,(r') . Taking into consid-

erations all this assumptions the matrix element (26) can be
rewritten in the following form
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where the quantity C is independent of the electron wave
vectors k| and k'

@n
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Note, that the square of the module of matrix element in this
case is independent of the electron wave vector change as in
the case of acoustic scattering.

The relaxation time of electrons in QW independently
scattering by the short-range potential of impurities uniformly

distributed in the QW volume with the concentration »; is
given by

(28)
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The averaging over impurity coordinates in {29) results in
the following factor in the expression for relaxation time
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Using (30}, after summation over &' we obtain
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The corresponding expression for relaxation time in bulk
crystal can be obtained in a similar way
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As can be seen from equations (31) and (32), the ratio of
relaxation times in MQW-structure and in bulk crystal is the
same as in the case of scattering by acoustic phonons (19).
The common feature of these two scattering mechanisms is
that the squared modules of matrix elements are independent
of the change of electron wave vector during the scattering
act. The relaxation time in these cases appears to be propor-
tional to the small thickness of QW layer and decreases with
the reducing of a due to the rise of density of final states
during electron scattering.

In the case of polar scattering by optical phonons the
probability of scattering is inversely proportional to the square
of phonon wave vector. This fact results in independence of
the relaxation time t5%" of the layer thickness in the limiting
case of thin QW layers and, as will be shown in subsequent
sections, gives the possibility to increase the thermoelectric
figure of merit in QW in comparison with the bulk value due
to the rise of density of states.

The Kinetic Coefficients and the Thermoelectric Efficiency
Using the equations for relaxation time (16}, (20) and (32),
the expressions for kinetic coefficients and the thermoelectric
figure of merit can be easily obtained.
For example for the electric conductivity in the plane of
QW one can write
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where f,(g) is the Fermi-Dirac distribution,

(33)

For simplification of the further treatment it is convenient
to write the expression for relaxation time as a function of
dimensionless electron energy
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where w = a\/Zm* ko T /mh ; integral F(u) is given by equa-
tion (22); and 1, is the coefficient of proportionality in energy

(34)

dependence of the relaxation time in the bulk case

(35)
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In the equations (34), (33) the exponents » and s are de-
fined for acoustic scattering and scattering by short-range
impurity potential as

1
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and for the case of polar scattering by optical phonons as
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After substitution of (34) in (33), the expression for elec-
tric conductivity in QW can be written in the following form
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where 1 is the chemical potential in ko T units measured

from the bottom of the lowest subband of dimensional quanti-
zation, and
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The expressions for the Seebeck coefficient a,, and

(39)

electronic component of the thermal conductivity k,, can be
obtained in a similar way
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The expressions for the thermoelectric figure of merit in
QW layers can be easily obtained using equations (38), (40)
and (41)
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where the material parameter B is determined by the follow-
ing expression
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if the phonon thermal conductivity of QW layer does not
change in comparison with the bulk case, the value of material
parameter B for the bulk case is determined by equation (43),
and the corresponding expressions for kinetic coefficients and
thermoelectric efficiency in this case has the similar form as
(38}, (40), (41) and (42). But for the bulk crystal the values of
energy and chemical potential are measured from the bottom
of the conduction band, and the integral (39) shouid be re-

B 0- (43)



placed with the corresponding Fermi integral F,, (p.‘), which
can be obtained from (39) by setting n=0.

In the case of acoustic scattering and scattering by short-
range impurity potentials=0. Therefore, the integral (39)
equals to the Fermi integral F, (p.‘), and the expressions for

kinetic coefficients and the figure of merit Z in bulk case and
in QW layers has exactly the same form. This means that the
optimal values of chemical potential are the same for the both
cases, and, hence, the maximum values of thermoelectric

efficiencies Z(uzpt)T are equal. But in the QW layers the

maximum value of the figure of merit is reached at higher
concentrations and lower mobilities than in bulk crystal.

In the case of polar scattering s =1 and the expressions for
Z,, and Z,,, differs from each other. In the relatively thick
QW layers the integral /() in (3%) approaches the unity and
the kinetic coefficients and the thermoelectric efficiency in
QW layers are close to the bulk values. In the limiting case of
thin QW layers the integral 7(x) in (39) is proportional to the
layer thickness a, the relaxation time (see equations (20),
(21)) becomes independent of the layer thickness, and the
electric conductivity o,, and the figure of merit increase
with the reducing @ due to the rise of the density of states in
quantum wells.

If we assume that the relaxation time in QW structure does
not differ from the one in the bulk crystal, as was made by
Hicks and Dresselhaus [1], the expression for electric condue-

tivity c; p for polar scattering can be easily obtained by sub-
(opt} _ (opt)

stituting 157’ =135~ in equation (33):
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The expression for thermoelectric efficiency in this case can
be written in the following form
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where the parameter B" is related to the material parameter
B by the following equation

ZnT= (45)
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Using equations (42} and (45), it is possible to compare the
dependencies of the thermoelectric efficiencies on QW thick-
ness in the two approximations: the first, which takes into
account the change of the relaxation time with the layer thick-
ness, and the second, which assumes, that the relaxation time
in QW is equal to that in the bulk crystal. The estimations
have been performed for the case of polar scattering, when the
rise of the figure of merit in MQW structure is expected. For
this case the material parameter B has been chosen to be
equal to0.073, which gives the maximum thermoelectric
efficiency in the bulk crystal of the order of unity,

(46)

ZIF* T =1. The dependencies of optimized thermoelectric
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efficiencies Z35" / Zip* and Z,™ | Z35F

in on the parameter

w are presented on the figure 1.

In order to obtain the dependencies of the figures of merit
on the thickness of QW layer @ the following parameters
were chosen: the average value of electron effective mass
m" =0.07my and the Debye temperature ® ;, =~ 150K , that
correspond to the parameters of PbTe. At the room tempera-
ture T =300K in this material the polar scattering by the
optical phonons can be considered elastic.
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Figure . The optimized thermoelectric figures of merit in
MQW structure for the polar scattering. The curve 1 is calcu-
lated taking into account the change of relaxation time in QW,
the curve 2 is calculated using bulk value for relaxation time.

The calculations in the present paper have been performed
in the assumption that the lowest conduction subband in QW
makes the main contribution to the kinetic effects. This as-
sumption requires that the energy difference between the two

lowest subbands As =312 A% /2m" a® is less than ko T or

the value of chemical potential in the case of degenerate sta-
tistics. The first of these conditions determines the upper

bound for the parameter w, which appears to be equal to 3.
The verification of the second condition has shown that in the
region of parameter w, where the value p,,, is positive, its

value is less than the thermal energy. Thus the contribution to
the kinetic coefficient from the upper subbands can be ne-
glected.

The curve 1 on the figure 1 corresponds to the thermoe-
lectric efficiency in the MQW structure calculated taking into
account the change of the relaxation time with the layer thick-
ness. The curve 2 on the figure 1 corresponds to the figure of
merit calculated using bulk value of the relaxation time. The
comparison has shown that in the case of polar scattering in
the both approximations the value of Z,, T increases over

the bulk value with the reducing QW layer thickness. How-
ever, in the approximation considering the relaxation time
change the figure of merit is increasing slightly less, because
(opt)
20D

the limiting value of < in this case is two times less than

in the bulk crystal.



Conclusions

In the present paper the thermoelectric figure of merit in
MQW structures at different scattering mechanisms was theo-
retically investigated. It has been shown that in the cases of
scattering by acoustic phonons and short-range impurity po-
tential the relaxation time in QW layer decreases in compari-
son with the bulk value proportional to the small value of the
layer thickness . This effect is the consequence of the fact,
that the scattering probability is independent of the electron
wave vector change during the scattering act. The decrease of
the relaxation time in QW layers completely compensate the
rise of the figure of merit due to the increase of the density of
states in the two-dimensional systems, and the expression for
the kinetic coefficients and the figure of merit have exactly the
same form. Therefore, the optimal values of the chemical

potential are equal and corresponding magnitudes of Z35* T

and Z{E* T are the same.

In the case of polar scattering by the optical phonons the
probability of scattering is inversely proportional to the square

of the phonon wave vector, and the relaxation time 1(205’) in

the limiting case of small a becomes independent of the layer
thickness and approaches to one-half of the bulk value. In this
case the electric conductivity and the thermoelectric efficiency
increase with the QW layer thickness as was predicted by
Hicks and Dressethaus [1-3]. These analytical calculations
have been illustrated with the numerical estimations, which
have shown that the figure of merit in QW can be by a factor
of 1.5 or 2 higher then in the bulk case. The comparison has
been made of the figure of merit calculated using equation

20) for'r(z"g'), which takes into account the variation of the

relaxation time with the layer thickness, and the figure of
merit, calculated in the approximation similar to that used in
[1]., which utilizes the bulk value of the relaxation time

for 1(20‘5'). It has been shown that in the both cases the values

of ZJ3* T increase with the diminishing of the QW layer

thickness, but the first approximation leads to the smaller
values of the figure of merit as the relaxation time for this case
is limited to one-half of the bulk value.

Thus, the calculations performed in the present paper have
shown that the thermoelectric figure of merit in the MQW
structures can be enhanced over the bulk value only if the
probability of scattering decreases with the rise of the electron
wave vector change during the scattering act.

The numerical results, obtained in the present paper, are
reasonable only for the aid of comparison of two approxima-
tions, mentioned above. The more realistic results [4-6, 14-17]
can be obtained taking into account the dimensional quantiza-
tion of the phonon spectrum, tunneling of electrons through
the barriers between the QW layers and the phonon thermal
conductivity through the barriers.
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