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Abstract
The calculations of mobility and the thermoelectric figure

of merit in multiple-quantum-well (MQW) structures have
been performed for the cases of different scattering mecha-
nisms: acoustical phonon scattering, scattering by short-range
impurity potential and polar scattering by optical phonons. [n
the first two cases, when the scattering probability is inde-
pendent of the electron wave vector change A,t during the
scattering act, the anallical expressions for mobility and the
thermoelectric figure of merit have been obtained at the as-
sumptions of infinite barriers height and standard dispersion
law of elecfions. The comparison with the case of polar scat-
tering by optical phonons, when the scattering probability is
proportional toAt-2, has shown that the enhancing of the
figure of merit is possible due to the size quantum effect only
ifthe scattering probability decreases with increasing ofA& .

Introductior
The pioneering works of Hicks and Dresselhaus [-3]

made a start on intensive study ofthe thermoelectric effects in
quantum wells and superlattices. They performed the calcula-
tions and estimations of the thermoelectric figure of merit Z
of layered structue with quantum wells and showed that the
thermoelectric efficiency in such structures could be increased
by a faclor of 2 or 3 over the bulk value due to the rise of the
density of states in quantum wells. The calculations in u-31
were based on the constant relaxation time (CRTA) approxi-
mation, in which the relaxation time was assumed to be inde-
pendent on both canier energy and thickness of the quantum
well a. In [4-6] the numerical calculations of the figure of
merit were performed taking into account the variation of the
relaxation time with the well thickness for different scattering
mechanisms and complex charge carrier dispersion relations.
These calculations showed that the rise ofthe density of states
ofelectrons in quantum wells led in some cases to decrease of
mobility and, hence, to diminution of the thermoelectric effi-
ciency in comparison with the CRTA approximation.

In the present pap€r we have performed analy'tical calcula-
tions of relaxation time and the thermoelectric figure of merit
for the cases of scattering by acoustical phonons, short-range
impurity potential and polar scattering by optical phonons.' In
order to compaxe the dependencies of relaxation time and
thermoelectric efficiency on the well width at different scat-
tering mechanisms and to achieve plain results the calcula-

I The results ofthe calculations for the cases ofacoustical
scattedng and scattering by short-range impurity potential
were published in [7] and the results conceming polar optical
scattering have been revised with more accurate examination
of the thin ouantum well limit.

tions have been performed for the case of infinite barrier
height and isotropic parabolic approximation for dispersion
law of electlons. In the case of polar scattering the numerical
estimations of the thermoelecfiic efficiency bave been per-
formed, and the results of these estimations have been com-
pared with the ones obtained in the same assumption as was
made in !1, i.e. using bulk value for the relaxation time in
MQW structures.

Relaxation Time for the Cases of Acoustic Scattering and
Polar Scatterirg by Optical Phonons

The wave function of electron localized inside the quan-
tum well (QW) with infinitely high baniers can be written as
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where kl is the wave vector of an electron in the QW plane;

the radius-vector r has two components: p inside the QW
plane and z in the direction perpendicular to the plane; and a
and ,l are thickness and area ofthe QW layer respectively.

The matrix element of scattering of electron flom state
with the wave vector in the plane of QW kll to the state kll'

accompanied with the absorption or emission ofphonon with
the wave vector q and conesponding change of phonon occu-
pation number from Nq to Nq' has the usual form:
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where U(r) is the potential energy of interaction between
electron and acoustic or optical phonon.

The scattering of electrons by acoustic phonons has been
considered in the deformation potential approximation as-
suming that the phonon spectrum does not change considera-
bly when we perform the transition from the bulk crystal to
MQW structue, i.e. considering scattering of electrons by
bulk acoustic phonons. In this case the potential energy of
interaction between electrons and acoustic phonons can be
expressed as [8]:
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where a1 is the deformation-potential constant; u(r) is the

displacement ofthe point r in the crystal caused by acoustic
lattice vibrations in the continual approximation; ly' is the
number of unit cells in the crystal volume; Mo is the unit-cell

mass; q is the wave vector ofa phonon; and do are the com-

plex normal coordinates.



The optical phonons are more sensitive to inhomogeneities
arising in layered structures with quantum wells. Calculations
of optical-phonon spectra in MQW stmcfires were performed
in a number of works (see, for example, review [9] and the
references therein). A comparison of charge-carrier scattering
by optical phonons in MQW structures [10, 1l], described
with the use of optical-phonon spectra of bulk type and quan-
tized optical-phonon spectra, showed that the differences
between the obtained results are not large. Therefore, in our
calculations we have considered the polar scattering of elec-
trons by bulk optical phonons. In this case using continual
approximation the potential energy of interaction between
electrons and optical phonons can be written as [8]:
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Here, V = S a is the volume of quantum well, o7 is the high-
est frequency oflongitudinal optical phonons and
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where s- and e6 are the high-frequency and static dielectric
constants respectively.

The calculations of matrix elements (2) for the cases of
acoustic and optical phonons are rather similar. They consist
of calculation of matrix element over phonon and electron

coordinates. The matrix elements of ao and ao* are not equal

to zero only for absorption and emission of phonons respec-
tively
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where oq is the frequency ofphonon with the wave vectorq.

At the temperatures sufficiently higher than the Debye
temperatue OD the phonon occupation numbers are much
greater then unity and can be expressed
as Nq =Nq +l F koT /hro.q, i.e. for acoustic phonons
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and for optical phonons
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In th€ equation (7) vo is the velocity ofsound.

The integration over coordinate p yields the delta func-
tions, which express the momentum conservation law in the
plane ofthe layer:
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where q, is the projection of the phonon wave vector q to
the plane ofthe layer; signs " t " correspond to the absorption
and emission of phonon respectively

The integration over coordinate z gives the form-factor

/ -  \  .  e r in 's in ( rcx )
Y'(q.) = ' lsinzl !!r 1r+it'= O, =:___1:::;. (10)

a i  \ a  )  n x u - x - /

where 4- is the component ol phonon wave vector q in the

direction of z-axisandx=aq,l2n .

Gathering together equations (2), (7>(10) the square ofthe
modulus ofthe matrix element (2) can be u'ritten as
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where the M! (q) are the bulk matrix elements of scattering,
that are defined at the high-temperature limit for scattering by
acoustic phonons as [8]
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and for polar scattering by optical phonons as
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The scattering by both acoustic and optical phonons at
7 >> @2 is elastic and the relaxation time in MQw-structure
can be written as
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where 6 -firnctions allow for the energy conservation law; and
e(k,) is the energy of electron corresponding to the motion in

the plane ofthe layer.
Replacing summation by integration in (14) leads to the

following expression for r,
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where z* is the effective mass ofelectron.
As the bulk matrix element for the case of acoustic scat-

tering (12) is independent ofq, the integration in (15) can be
performed analytically. The resulting expression for the re-
laxation time can be represented in the following form

(  16)

where g2p =.* /(Znh2) is the two-dimensional density of

states, and the quantity X can be obtained from (10) by
means of intggratiot over qz
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The equation (16) for relaxation time agrees with that pre-
viously reported in [12] and should be compared with the
corresponding relaxation time for a bulk crystal [8]
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where 93, = m' k l2r2 h3 is the density of states in a bulk

crystal.
The comparison of equations (16) and (18) has shown that

the rela\ation time in MQW structue at the acoustic scatter-
ing is less than in bulk crystal and decreases proportional to
the layer thickness a
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potential. It can be assumed that the impurity potential U(r)

has an effective radius ro , which is of the order of the intera-
tomic distance. In order to calculate the matrix element of
scattering in this case we have used the Bloch wave function
ofelectron in quantum well
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but in the equation (20) the quantity X becomes a function of
elecfon wave vector

In the case of polar scattering the mahix element (13) is
inversely proportional to the square of the phonon wave vec-
tor4 . The expression for relaxation time in this case has the
similar form as for acoustic scattering (16)

, f6o-t =2!1u"0,@)12 tt  g2p x(u),
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where u = qkt /n , alrd the integral 1(z) is defined as follows
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The relaxation time in the bulk crystal at polar scattering

can be obtained from (18), where M,.(q) should be replaced
with the matrix element (13).

The comparison of the relaxation times in the MQW-
structue and in the bulk crystal for the case ofpolar scattering
by optical phonons can be represented in the following form

(23)

Then the matrix element of scattering by the impurity atom
residing at the lattice site r, can be written in the following
form
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It is convenient to make a substitution r = r'+ri . Then us-

ing periodicity of the Bloch amplitude au (r) = zk (r') , equa-
tion (25) can be expressed as
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Taking into account that the short-range potential differs

from zero in a small region Oo - ro3 the domain of integration

in (25) can be replaced with Qo . If we consider scattering of
electrons with the small wave vectors, we have lr'<<1 for
the radius vectors r' in the regiono0. Then all the exponen-
tial functions under the integral in (26) are close to unity and
sine can be replaced with sin(n z, / a) . ln addition, for small
values of the wave vector, the dispersion law of electrons is
almost parabolic; therefore, in the same approximation, the
Bloch amplitudes au(r') can be assumed to depend on k
weakly and can be replaced with as(r') . Taking into consid-
erations all this assumptions the mafiix element (26) can be
rewritten in the followins form

( le)

,*,,u , = tr Io' ,1'!a "l;'.i' ,n(i) 
,r'

(22)

' 2D

ri3D

The integral ,f(z) in this equation can not be expressed in
analytical form. In the case of large values of z it approaches
the unity, and at t}le small ll it can be approximated
by I(u)x4u/3. As z is proportional to the thickness of lay-

ers 4 , the relaxation trme tffi') decreases proportional to a in
the case of relatively thick quantum wells as for the acoustic
scattering. Bur in the case of thin QW layers r!oj') becomes
independent of layer thickness and approaches to fte
value'c\[') /2. Thus in the case of thin QW layers at the polar
scattering the suppositions made by llicks and Dresselhaus [-
3] becomes valid. raking into account. however. rhat t!'j') is

two times smaller thanT lodt) .

Relaxation Time for the Case of Scattering by Short-range
lmpurity Potential

The scattering by short-range impuity potential is impor-
tant in many thermoelectric materials with high permittivity
such as PbTe F3l when the Coulomb scattering is ineffective,
therefore the scattering occurs at the inner part of the impurity

M u l u l '

where the quantity
vectors kl and k '
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Note, that the square of the module of matrix element in this
case is independent of the electron wave vector change as in
the case of acoustic scattering.

The relaxation time of electrons in QW independently
scattering by the short-range potential of impurities uniformly
distributed in the QW volume with the concentration ,1 is

given by
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C is independent of the electron wave
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The averaging over impudty coordinates in (29) results in

the followins factor in the exnression for relaxation time

In the equations (34), (35) the exponents r
fined for acoustic scattering and scattering
impurity potential as

I
r = _ _ ,  S  = U ,

and J are de-
by short-range

The corresponding expression for relaxation time in bulk
crystal can be obtained in a similar way

r l l ,  =: : : lC I '  n,  grr .  (32)
n

As can be seen from equations (31) and (32), the ratio of
relaxation times in MQW-structure and in bulk crystal is the
same as in the case of scattering by acoustic phonons (19).
The cornmon feature of these two scattering mechanisms is
that the squared modules of matrix elements are independent
of the change of elecuon wave vector during the scattering
act. The relaxation time in these cases appears to be propor-
tional to the small thickness of QW layer and decreases with
the reducing of a due to the rise of density of final states
during electron scattering.

In the case of polar scattering by optical phonons the
probability of scattering is inversely proportional to the square
of phonon wave vector. This fact results in independence of
the relaxation time r!$') ofthe layer thickness in the limiting
case of thin QW layers and, as will be shown in subsequent
sections, gives the possibility to increase the thermoelectric
figure of merit in QW in comparison with the bulk value due
to the dse ofdensity ofstates.

The Kinetic Coefficients and the Thermoelectric Effici€ncy
Using the equations for relaxation time (16), (20) and (32),

the expressions for kinetic coefficients and the thermoelectric
figure of merit can be easily obtained.

For example for the electric conductivity in the plane of
QW one can write
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Using (30), after summation over &l ' we obtain
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where /o(e) is the FermiDirac distribution.

*h"r", = o J2 i W / Th I lllte1{rat .a(r) is given by equa-

tion (22); and r0 is the coefficient ofproportionality in energy
dependence ofthe relaxation time in the bulk case

(30) and for the case ofpolar scattering by optical phonons as
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Aft€r substitution of (34) in (33), the expression for elec-

tric conductivity in QW can be written in the following form
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where p' is the chemical potential in f0 f units measured
from the bottom ofthe lowest subband ofdimensional quanti-
zation, and

6 /  ^  - ,

r1i, ' . ,)=-(- �afoE'v' ' l  =i ' - ,* (3e)
d l .  dx  ) r ' \w^ lx )

The expressions for the Seebeck coefficient cD and

electronic component ofthe thermal conductivity rcr, can be

obtained in a similar way

(40)
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The expressions for the thermoelectric figure of merit in
QW layers can be easily obtained using equations (38), (40)
and (41)

(42)

If the phonon thermal conductivity of QW layer does not
change in comparison with the bulk case, the value of material
parameter B for the bulk case is determined by equation (43),
and t}te corresponding expressions for kinetic coefficients and
thermoelectric efficiency in this case has the similar form as
(38), (40), (al) and (42). But for the bulk crystal the values of
energy and chemical potential are measured from the bottom
of the conduction band, and the integral (39) should be re-

ZzoT t",o-"(".j)#r',oJ'
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For simplification of the further treatment it is convenient where the material parameter B is determined by the follow-
to write the expression for relaxation time as a function of ing expression
dimensionless electron energy
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placed with the corresponding Fermi integral I,(p'), which

can be obtained from (39) by setting r = 0 .
In the case of acoustic scattering and scattering by short-

range impurity potentials=0. Therefore, the integral (39)

equals to the Fermi integral {, (p- ), and the expressions for

kinetic coefficients and the figure ofmerit Z in bulk case and
in QW layers has exactly the same form. This means that the
optimal values ofchemical potential are the same for the both
cases, and, hence, the maximum values of thermoelectric

.  - l *  l -efficiencies Z\topt )T are equal. But in the QW layers the

maximum value of the figure of merit is reached at higher
concenfiations and lower mobilities than in bulk crystal.

In the case of polax scattering s = 1 and the expressions for
Z2D and Z3D differs from each other. In the relatively thick

QW layers the integral .i(a) in (39) approaches the unity and
the kinetic coefficients and the thermoelectric efliciency in
QW layers are close to the bulk values. In the lirniting case of
thin QW layers the integral 1(z) in (39) is proportional to the

layer thickness tr, the relaxation time (see equations (20),
(21)) becomes independent of the layer thickness, and the
electric conductivity o, and the figure of merit increase

with the reducing a due to the rise of the density of states in
quantum wells.

If we assume that the relaxation time in QW structure does
not differ from the one in the bulk crystal, as was made by
Hicks and Dresselhaus [1], the expression for electric conduc-

tivifi oip for polar scattering can be easily obtained by sub-

stituting rtodl) = r5odr) in equation (33):

effrciencies Zitr lZYtr and Z;[* lZff on the paxameter

w are presented on the figure l.
In order to obtain the dependencies ofthe figures of merit

on the thickness of QW layer a the following parameters
were chosen: the average value of electron effective mass

m* =0.07m0 and the Debye temperature @D *150K, that
correspond to the parameters of PbTe. At the room tempera-
tule f =300K in this material the polar scattering by the

optical phonons can be consideredoelastic.

a-A
20 4D 60 Al 100 1m 140

8 .2  0 .1  
_  

OU 0B  1 .0

Figure l. The optimized thermoelectric figures of merit in
MQW structue for the polar scattering. The curve 1 is calcu-
lated taking into account the change ofrelaxation time in QW,
the curve 2 is calculated using bulk value for relaxation time.

The calculations in the present paper have been performed
in the assumption that the lowest conduction subband in QW
makes the main contribution to the kinetic effects. This as-
sumption requires that the energy difference between the two

lowest subbands ar =3n2 h2 12.* o2 is less than ,t6l or
the value of chemical potential in the case of degenerate sta-
tistics. The first of these conditions determines the upper
bound for the parameterw, which appears to be equal to 5.
The verification ofthe second condition has shown that in the
region of parameterw, where the value prol is positive, its

value is less than the thermal energy. Thus the confiibution to
the kinetic coefficient from the upper subbands can be ne-
glected.

The curve I on the figure I corresponds to the thermoe-
lectric efficiency in the MQW structue calculated taking into
account the change of the relaxation time with the layer thick-
ness. The curve 2 on the figure I corresponds to the figure of
merit calculated using bulk value ofthe rela,ration time. The
comparison has shown that in the case of polar scattering in
the both approximations the valve of Z2DT increases over
the bulk value with the reducing QW layer thickness. How-
ever, in the approximation considering the relaxation time
change the figure of merit is increasing slightly less, because

the limiting vah:e of rffit) in this case is two times less than

in the bulk crystal.

\ . 2
gn
N

1

(44)

The expression for thermoelectric efficiency in this case can
be written in the followins form
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where the parameter .B* is related to the material parameter
-B by the following equation

B.  =81
2 w

Using equations (42) and (45), it is possible to compare the
dependencies of the thermoelectric efficiencies on QW thick-
ness in the two approximations: the first, which takes into
account the chang€ ofthe relaxation time with the layer thick-
ness, and the second, which assumes, that the relaxation time
in QW is equal to that in the bulk crystal. The estimations
have been performed for the case of polar scattering, when the
rise of the figure of merit in MQW structure is expected. For
this case the material parameter d has been chosen to be
equal 100.073, which gives the maximum thermoelectric
efficiency in the bulk crystal of the order of unity,

Z\:ff f = |. The dependencies of oplimized thermoelectric

(46)



Conclusions
In the present paper the thermoelectric figure of merit in

MQW structures at different scattering mechanisms was theo-
retically investigated. It has been shown that in the cases of
scattering by acoustic phonons and short-range impurity po-
tential the relaxation time in QW layer decreases in compari-
son with the bulk value proportional to the small value of the
layer thickness a . This effect is the consequence of the fact,
that the scattering probability is independent of the elecfon
wave vector change during the scattering act. The decrease of
the relaxation time in QW layers completely compensate the
rise ofthe figure of merit due to the increase ofthe density of
states in the two-dimensional systems, and the expression for
the kinetic coefficients ard the figure of merit have exactly the
same form. Therefore, the optimal values of the chemical

potential are equal and corresponding magnitudes of Zyff T

afi Zyff T are the same.

In tJIe case of polax scattering by the optical phonons the
probability ofscattering is inversely proportional to the square

ofthe phonon wave vector, and the relaxation trme rffii) in

the limiting case of small a becomes independent ofthe layer
thickness and approaches to one-half of the bulk value. In this
case the electric conductivity and the thermoelectric efficiency
increase with the QW layer thickness as was predicted by
Hicks and Dresselhaus !-31. These analrtical calculations
have been illustrated with the numerical estimations, which
have shown that the figure of merit in QW can be by a factor
of 1.5 or 2 higher then in the bulk case. The comparison has
been made of the figure of merit calculated using equation

(20) torcfSq , which takes into account the variation of the
relaxation time with the layer thickness, and the figure of
merit, calculated in the approximation similar to that used in
[1], which utilizes the bulk value of the relaxation time
^ l o n l l - . .
tbr r);". It has been shown that in the both cases the values

of Zyff T increase with the diminishing of the QW layer
thickness, but the first approximation leads to the smaller
values ofthe figure of merit as the relaxation time for this case
is limited to one-halfofthe bulk value.

Thus, the calculations performed in the present paper have
shown that the thermoelectric figure of merit in the MQW
structures can be enhanced over the bulk value only if the
probability of scattering decreases with the rise ofthe electron
wave vector change during the scattedng act.

The numerical results, obtained in the present paper, are
reasonable only for the aid of comparison of two approxima-
tions, mentioned above. The more realistic results 14-6, l4-l'll
can be obtained taking into account the dimensional quantiza-
tion of the phonon spectrum, tunneling of electrons through
the barriers between the QW laye6 and the phonon thermal
conductivity through the barriers.
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