Thermoelectric properties of $Sb_{2-x}Ag_xTe_3$ single crystals

 \check{C} . Drašar¹, M. Steinhart¹, P. Lošťák¹, J Horák², Z. Zhou³, J.S. Dyck³, and C. Uher³

¹ Faculty of Chemical Technology, University of Pardubice, Cs. Legii Square 565,

532 t0 Pardubice, Czech Republic

²Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry of the Academy of Sciences of the

Czech Republic and University of Pardubice, Studenstská 84,

532 10 Pardubice, Czech Republic

³ Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA

 $Sb_{2-x}Ag_xTe_3$ single crystals (x = 0.0; 0.014; 0.018 and Ag-doped Sb_2Te_3 crystals have however not yet been done.
22) were prepared from the elements Sb, Ag, and Te of 5N In the present paper, samples of $Sb_{2-x}Ag_xTe_3$ 0.022) were prepared from the elements Sb, Ag, and Te of 5N In the present paper, samples of $Sb_{2-x}Ag_xTe_3$ single crystals nurity by a modified Bridgman method. The obtained crystals are characterized by measurements of t purity by a modified Bridgman method. The obtained crystals are characterized by measurements of the temperature were characterized by measurements of the temperature dependence of electrical resistance, Hall coefficient, were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of $5-300$ K. It was observed that with an increasing Ag content in the samples the electrical resistance, the Hall coefficient and the Seebeck coefficient decrease. This means that the incorporation of Ag atoms into the $Sb₂Te₃$ crystal structure results in an increase in the concentration of 2. Experimental
holes in the doned crystals. The observed effect is explained The starting polycrystalline materials for growing the holes in the doped crystals. The observed effect is explained The starting polycrystalline materials for growing the by a model of defects in the crystals. Subtracting the single crystals were prepared from the elements Sb by a model of defects in the crystals. Subtracting the single crystals were prepared from the electronic component of thermal conductivity from the total Te of 5N purity. electronic component of thermal conductivity from the total Te of 5N purity.
thermal conductivity we obtain the lattice thermal The starting polycrystalline materials were prepared from thermal conductivity we obtain the lattice thermal The starting polycrystalline materials were prepared from conductivity κ_L . At low temperatures, κ_L has an approximate a mixture of Sb, Te, and Ag, corresponding t conductivity κ_L . At low temperatures, κ_L has an approximate T^2 dependence and the data up to 100 K can be fitted well assuming that phonons scatter on boundaries, point defects, charge carriers, and other phonons. horizontal furnace at 1073 K for 48 h.

l. lntroduction

Antimony telluride Sb_2Te_3 belongs to the layered-type semiconductors with tetradymite structure (space group D_{3a}^5), which are used as materials for the construction of gradient of 400 K/5 cm at a rate of 1.3 mm/h. thermogenerators and solid-state coolers [l]. For the application of $Sb₂Te₃$ in these devices it is necessary to prepare single or polycrystalline materials with well defined physical parameters (electrical and thermal conductivity, mobility of free current carriers, thermoelectric power) which can be modified by doping with suitable foreign atoms. Therefore, an investigation of the effect of various dopants on the physical properties of $Sb₂Te₃$ is interesting both for basic and applied research.

The influence of silver impurity atoms on physical properties of $Sb₂Te₃$ single crystals has been studied in several papers [2-4]. The crystals Sb_2, Ag_xTe_3 and $Sb_2Ag_xTe_3$ were characterized by the measurements of plasma resonance frequency, electrical conductivity and Hall coefficient in papers [2,3]. It was found that the hole concentration increases with Ag-concentration for both crystal series. This effect was ascribed to the formation of substitutional defects Ag''_{sb} . The Hall coefficient, electrical resistivity, and Shubnikov - de Hass effect were studied on $Sb_2Ag_xTe_3$ crystals in paper [4]. Ag in the Sb₂Te₃ lattice was shown to be an acceptor. Measurements of the Shubnikov-de Haas effect revealed that the incorporation of Ag atoms has no effect on the energy spectra.

Abstract
Studies of the Seebeck coefficient and thermal conductivity of
Studies of the Seebeck coefficient and thermal conductivity of
Sh_a Ag. Te₃ crystals have however not yet been done.

coefficient and thermal conductivity in the temperature range of 5-300 K, with the aim to investigate how these quantities are affected by incorporation of silver atoms into the crystal lattice of Sb_2Te_3 .

stoichiometry $Sb_{2-x}Ag_xTe_3$, in silica ampoules evacuated to a pressure of 10^{-4} Pa. The synthesis was carried out in a

The single crystals were grown using the Bridgman method. A conical quartz ampoule, containing the synthesized polycrystalline material, was placed in the upper (warmer) part of the Bridgman furnace, where it was annealed at 1003 K for 24 hours. Then it was lowered into a temperature

The obtained single crystals, 50 mm in length and 10 mm in diameter, could be easily cleaved. Their trigonal axis (caxis) was always perpendicular to the pulling direction so that the (0001) plane was parallel to the ampoule axis. The orientation of the cleavage faces was carried out using the Laue back-diffraction technique which confirmed that these faces were always (0001).

To determine their physical properties, samples with dimensions of $10x3x3$ mm³ were cut out from the middle part of the single crystals. The concentration of silver in these samples was determined by atomic emission spectrometry (AES).

Seebeck coefficient (thermopower) and thermal conductivity were determined using a longitudinal steady-state technique in a cryostat equipped with a radiation shield. Thermal gradients were measured with the aid of fine chromel-constantan thermocouples, and a miniature strain gauge served as a heater. For the Seebeck probes we used fine copper wires that have previously been calibrated, and their thermopower contribution subtracted from the measured sample thermopower. The Hall effect and electrical conductivity were studied using a Linear Research ac bridge with 16 Hz excitation in a magnet cryostat capable of fields up to 5T. Measurements of these parameters were made over the temperature range of 5-300K.

Figure 1. Temperature dependence of the Hall coefficient $R_H(B||c)$ of $Sb_{2-x}Ag_xTe_3$ single crystals.

Figure 2. Temperature dependence of the Seebeck coefficient S($\Delta T \perp c$) of Sb_{2-x}Ag_xTe₃ single crystals.

Figure 3. Temperature dependence of the electrical resistivity $\rho_{\perp c}$ of $Sb_{2-x}Ag_xTe_3$ single crystals.

Table 1. Values of the transport parameters at $T = 300$ K for Sb_2, Ag, Te_1 single crystals

No.	x	ρ_{\perp} $\lceil \mu \Omega/m \rceil$	$R_H(B c)$, $[cm^3/C]$	$\alpha(\Delta T \perp c)$ $[\mu$ V/K]
	Ω	2.12	0.071	79
$\overline{2}$	0.014	1.50	0.028	58
3	0.018	1.48	0.022	43
4	0.022	1.41	0.019	35

3. Results and discussion

The temperature dependences of Hall coefficient $R_H(B||c)$, Seebeck coefficient S($\Delta T \perp c$) and electrical resistivity $\rho_{\perp c}$ are presented in Figures 1-3. The values of these parameters at $T=300$ K are summarized in Table 1.

From the obtained results it can be seen that the incorporation of Ag atoms into the $Sb₂Te₃$ crystal structure leads to a decrease of all investigated parameters. This implies that Ag-doping of the $Sb₂Te₃$ crystal structure produces an increase in the concentration of holes. This result agrees well with the conclusions reported in papers [2-4].

In agreement with papers [2,3], an increase in the hole concentration due to Ag doping can be explained by the incorporation of Ag atoms into the Sb-sublattice, i.e. by the substitution of Ag atoms for Sb atoms. The formation of these substitutional defects can be described by the following equation

$$
2V_{\rm Sb}''' + 3V_{\rm Te}^{\bullet\bullet} + 2Ag + 3Te = 2Ag_{\rm Sb}'' + 3Te_{\rm Te} + 4h^{\bullet} \qquad (1)
$$

where $V_{Sb}^{\prime\prime\prime}$ and V_{Te}^{*} are vacancies in the antimony and tellurium sublattice, respectively, Te_{Te} are Te atoms in the Te-sublattice, and h'are holes. In Eq.1 we suppose that every 2 incorporated Ag atoms are accompanied by 3 incorporated Te atoms. This assumption was based upon the fact that during the synthesis of the doped crystals, the starting composition corresponded to the formula $Sb_{2-x}Ag_xTe_3$.

To quantify the enhancement of the free carrier density with the density of the incorporated Ag atoms in the crystal structure of Sb_2Te_3 , it is first necessary to determine the concentration of free current carriers P. As the experimental data presented in this paper do not allow us to obtain an exact value of P, we have determined an approximate value of P from the measured Hall coefficient $R_H(B||c)$ in the following

way: We used the expression $R_H(B||c) = \gamma \frac{I_H}{I}$, where e is the Pe electron charge, γ the structure factor, and r_H the scattering factor in the Hall constant. For γ we have used the value of 0.74 given in the paper [5] and we assumed that the value of γ does not change with the incorporation of Ag into the crystal lattice of Sb_2Te_3 . Moreover, we took the value of the scattering factor r_H to be close to unity, i.e. $r_H = 1$. The approximate values of P, obtained in this way, are given in Table 2.

Changes in the hole concentration were calculated as $\Delta P =$ $P - P_0$ (where P_0 is the concentration of holes in the undoped $Sb₂Te₃$ crystal). The ratio of the change in hole concentration

 $\overline{\Delta P/c_{Ag}}$ No. P AP c_{Ag} $[10^{19}cm^{-3}]$ $[10^{19}$ cm⁻³] $[10^{19}$ cm⁻³] I 0 6.60 \bullet $2 \parallel 9.15 \parallel 16.5 \parallel 9.9 \parallel 1.08 \parallel$ 3 | 11.50 | 21.0 | 14.4 | 1.25 4 13.95 24.3 17.7 1.27

Table 2. Free carrier concentration in $Sb_{2-x}Ag_xTe_3$ single crystals.

 ΔP to the density of the incorporated Ag atoms, $\Delta P/c_{Ag}$, gives rise to an increase of hole concentration per one Ag atom as shown in the last column of Table 2. According to Eq.l, $\Delta P/c_{\text{Ag}}$ values should be close to 2. From Table 2 it is evident that one incoryorated Ag atom produces approximately I hole only. This means that Ag displays a doping efficiency of roughly 50%. A possible explanation of this fact is that Ag

Figure 4. Temperature dependence of the thermal conductivity κ of $Sb_{2-x}Ag_xTe_3$ single crystals.

atoms interact with native defects of $Sb₂Te₃$. It is well known [6] that dominant defects in Sb_2Te_3 are antisite defects Sb_{Te} . This interaction can be described by the following equation

$$
(Sb'_{Te} + h^*) + 2(2V_{Sb} + 3V_{Te}) + 2Ag + 3Te = 2Sb_{Sb} + 2Ag_{Sb}'' + 3Te_{Te} + 5V_{Te}^{*} + 6e'
$$
 (2)

According to [3] the lower doping efficiency relates to the fact that some Ag atoms form four-layer lamellae $[Ag_{0.5}Sb_{0.5}]$ -Te- $[Ag_{0.5}Sb_{0.5}]$ -Te, which corresponds to the $AgSbTe_2$ structure. ln this structure the crystal planes of the cation sublattice are occupied randomly with Sb and Ag atoms. Even the presence of Ag atoms at interstitial positions can not be excluded. We note that Agi are supposed to be present in isostructural $Bi₂Te₃ [3]$.

Temperature dependence of the total thermal conductivity κ is given in Fig. 4.

The values of κ for Sb₂Te₃ increase as the temperature decreases and a peak develops at a temperature near 13 K. Below the peak, κ decreases with an approximate T^2 dependence. It is evident that the incorporation of Ag atoms into the $Sb₂Te₃$ crystal structure results in the suppression of the values of thermal conductivity in the entire temperature region.

Total thermal conductivity κ , in general, is the sum of two components, $\kappa = \kappa_L + \kappa_e$ where κ_e and κ_L are the electronic and lattice thermal conductivity contributions, respectively.

The exact calculation of κ_e is complicated by the likely presence of two valence bands the parameters of which are not well established [4]. Therefore as an approximation for the following discussion we will consider only one type of hole. The electronic component of the thermal conductivity κ_e was calculated from the experimental values of resistivity ρ using

Figure 5, Temperature dependence of the lattice thermal conductivity κ _L of Sb_{2-x}Ag_xTe₃ single crystals (open symbols). The solid lines are fits to Eqs. 3 and 4, see text below.

the Wiedemann-Franz relation $\kappa_e = LT/\rho$, where L is the Lorenz number and T is the absolute temperature.

The values of the electronic component of thermal conductivity K_e were calculated under the assumption that $Sb₂Te₃$ can be considered a degenerate semiconductor. To calculate κ_e from the experimental data of electrical resistivity we have used a constant value of the Lorenz number $L = L_0$ $= \pi^2/3$ (k_B/e)², the so-called Sommerfeld value. Substracting K_{e} from the total thermal conductivity we obtain the lattice component κ_L . The calculated temperature dependences of κ_L are presented in Figure 5.

According to the discussion presented in [7], the approximation used in the calculation of κ , of Sb_2Te_3 crystals is plausible for temperatures under 100K. Therefore, in Fig.5 κ_L is given for the temperature range of 5-100 K.

From this figure we can see that Ag-doping of the $Sb₂Te₃$ crystal structure results in a decrease in the lattice component of the thermal conductivity. Temperature dependences of κ_L have been fitted within the Debye approximation using the following expression [8]:

$$
\kappa_L(T) = \frac{k_B}{2\pi^2 \nu} \left(\frac{k_B T}{\hbar}\right)^3 \int_0^{\theta_D/T} \tau_C \frac{y^4 e^y}{\left(e^y - 1\right)^2} dy \qquad (3)
$$

where k_B is the Boltzmann constant, \hbar is the reduced Planck constant, y stands for dimensionless parameter $y = \hbar \omega / k_B T$, ω is the phonon frequency, θ_D is Debye temperature, ν is the velocity of sound, and τ_C is phonon relaxation time. This relaxation time can be written in terms of individual scattering times accounting for various scattering processes as

$$
\tau_C^{-1} = \frac{v}{d} + A\omega^4 + B\omega^2 T \exp\left(-\frac{\theta_D}{3T}\right) + C\omega \,. \tag{4}
$$

Here d is the crystal dimension ($d = 2$ mm here for the smallest one) and the coefficients A , B , and C are temperature independent fitting parameters. The terms in Eq.4 stand for boundary, point-defect, three-phonon umklapp, and carrierphonon scattering, respectively. The first three terms account for phonon scattering in dielectric crystals. The fourth term represents relaxation time for scattering of phonons by free carriers in a parabolic band.

To make use of Eqs.3 and 4, one needs the Debye temperature θ_D . In fact, this temperature is strictly not a constant but is temperature dependent. While $\theta_D(T)$ is known for $Bi₂Te₃$ [9,10], the corresponding temperature dependence for Sb_2Te_3 is not available. We make an assumption that, while different in magnitude, the $\theta_D(T)$ of both Bi₂Te₃ and $Sb₂Te₃$ are similar. Accordingly, the temperature dependence of $\theta_D(Bi_2Te_3)$ was shifted to fit the value of $\theta_D(Sb_2Te_3)$ = l60K at T=80K. This dependence was fitted and expressed by means of two polynomials

$$
\theta_D \text{ (T=2-8K)} = 107.617 + 1.291 \text{T} - 0.008 \text{T}^2\n\n\theta_D \text{ (T=8-100K)} = 91.258 + 3.188 - 0.064 \text{T}^2 + 5.895 \text{e} - 4 \text{T}^3 - 1.2008 \text{e} - 6 \text{T}^4
$$

which, in turn, were used in fitting Eqs.3 and 4. The sound velocity was estimated in Ref. 7 to be $v = 2900$ m.s⁻¹. The results of the fit are summarized in Table 3 and in Fig. 5.

Upon inspecting fitting parameters in Table 3, it is evident that the primary influence of silver on the lattice thermal conductivity arises via the large increase in the point defect scattering parameter A . It can be written as [11]

$$
A = \frac{\Omega \Gamma}{4\pi v^3} \tag{6}
$$

where Ω is the unit cell volume (for Sb₂Te₃ $\Omega = 0.161$ nm³), Γ is the scattering parameter which for a compound A_aB_b can be written as [12]

$$
\Gamma(A_{a}B_{b}) = \frac{a}{a+b} \left(\frac{M_{A}}{M_{m}}\right)^{2} \Gamma(A) + \frac{b}{a+b} \left(\frac{M_{B}}{M_{m}}\right)^{2} \Gamma(B), \tag{7}
$$

where M_m is the mean atomic mass of atoms forming the compound, $M_m = (aM_a + bM_b)/(a+b)$. $\Gamma(A,B)$ is the scattering parameter of the substitutional impurity at the respective site,

$$
\Gamma(A,B) = \alpha (1-\alpha) \left[\left(\Delta M / M_{ave} \right)^2 + \epsilon (\Delta \delta / \delta_{ave})^2 \right] \tag{8}
$$

where α is the relative concentration of impurity at the respective site ($\alpha = x/2$ in this case), $\Delta M = M_i - M(A, B)$ is the atomic mass difference between the impurity and an atom normally associated with that lattice site, $\Delta \delta = \delta_i - \delta$ is the difference in radii between the impurity and the atom normally associated with that lattice site, M_{ave} and δ_{ave} are the

Table 3. Fitting parameters for theoretical analysis of lattice thermal conductivity of Sb_{2-x} Ag_xTe₃ single crystals as they refer to Eqs.4 and 5.

No.	x (actual)	$A(10^{45}s^3)$	$B(10^{-18} s.K^{-1})$	$C(10^4)$
		9.6	27	0.82
	0.014	-31	27	1,2
2	0.018	97	23	
	0.022	140	20	1.0

Table 4. Values of the parameter ϵ and the ratio R of $Sb_{2-x}Ag_xTe₃$ single crystals resulting from the analysis of \overline{A} , see text for details.

weighted averages of mass and radius at that lattice site, respectively, and ϵ is the phenomenological parameter. The first term of Eq.8 accounts for mass fluctuation and the second term accounts for atomic radius fluctuations, i.e., elastic strain.

The exact radii of Sb and Ag in $Sb₂Te₃$ are unknown. The average distance between Sb and Te in the compound (0.31 I nm) would rather support an ionic crystal picture $(r({\rm Sb}^{+3})+r({\rm Te}^{2}) = 0.90 + 2.07$ nm), than a covalent one $(r({\rm Sb})$ $+ r(Te) = 1.37 + 1.36$ nm). To keep the things consistent we use for all elements the ionic crystal values and $r (Ag^{+1})$ = 1.29 nm $[13]$.

The calculated values of the ϵ parameter and the ratio $R = c(\Delta\delta'\delta_{ave})^2/(\Delta M/M_{ave})^2$ are summarized in Table 4. The actual concentration (AES-value) was used for an evaluation. Increasing values of both ϵ and R may suggest the presence of more than one type (Ag''_{s6}) of defect which dominate at different temperatures. Another possible explanation is the interaction of $Ag_{6b}^{\prime\prime}$ with native defects. As there is no direct evidence which one of the Ag-defects is dominant, (also the above discussion of transport data is ambiguous) the situation becomes very complex and any further discussion is likely pointless. We observe little change in both parameters B and C, which means that umklapp and electron-phonon interactions are not influenced by the incorporation of Ag in the $Sb₂Te₃$ matrix.

Suitability of materials for thermoelectric applications is usually judged by the thermoelectric figure of merit $Z =$ $\sigma\alpha^2/\kappa$, where $\sigma=1/\rho$ is the electric conductivity, α is the Seebeck coefficient and κ is the total thermal conductivity. Temperature dependence of Z for the $Sb_{2-x}Ag_xTe_3$ crystals is given in Fig. 6.

It is evident that Ag-doping of $Sb₂Te₃$ crystals leads to a decrease in the value of their figure of merit. In spite of the fact that the free carrier concentration of the samples is not optimized we can conclude that Ag-doping in Sb_2Te_3 crystals is unlikely to improve the parameters decisive for thermoelectric applications. Inspecting the transport data it is clear that upon Ag-doping the free carrier mobility decreases.

Figure 6. Temperature dependence of the figure of merit Z of $Sb_{2-x}Ag_xTe_3$ single crystals.

On the other hand, we note that doping of tetradymite-type crystals like Sb_2Te_3 and Bi_2Te_3 with transition metals can result in the preparation of novel materials with interesting magnetic properties. For example, $Sb_{2-x}V_xTe_3$ crystals have recently been shown to display properties characteristic of the diluted magnetic semiconductors $[14]$.

Conclusions

From the results of the measurements of transport coefficients of $Sb_{2-x}Ag_xTe_3$ crystals we have come to the following conclusions:

1. Doping of Sb_2Te_3 crystals by Ag-atoms results in an increase in the hole concentration. We assume that this effect is due to the incorporation of Ag atoms into the Sb-sublattice and the formation of negatively charged substitutional defects of Ag''_{Sb} .

2. Lattice thermal conductivity can be fitted well assuming that phonons scatter on boundaries, point defects, charge carriers, and other phonons within the Debye approximation. Incorporation of Ag-atoms into $Sb₂Te₃$ crystal lattice affects primarily point defect scattering.

3. Doping Sb_2Te_3 crystals by Ag-atoms decreases the value of the figure of merit Z, primarily because their carrier mobility is much depressed. Thus, silver is not an effective dopant of thermoelectric materials based on the tetradymite type structure.

Acknowledgments

The research was supported by Ministry of Education of Czech Republic under the project KONTAKT ME 513 and the NSF erant INT 0201 I14.

References

- 1. Nolas, c. S., Sharp, J., Goldsmid, H. J., hermoelectric Basic Principles and New Materials Developments. Springer (Berlin, Heidelberg, 2001), pp. 111-131
- 2. Horák, J., Lošťák, P., Šiška, L., Stordeur, M., "The Nature of Silver Impurity Atoms in Antimony Telluride", Phys. Status Solidi (b), Vol. 114 (1982), pp. 39-45
- 3. Navrátil, J., Klichová, I., Karamazov, S., Šrámková, J., Horák, J., "Behavior of Ag Admixtures in Sb_2Te_3 and Bi₂Te₃ Single Crystals", J. Solid State Chem., Vol. 140 (1998), pp. 29-37
- 4. Kulbachinskii, V. A., Kaminskii, Yu., Kytin, V. G., Lošťák, P., Drašar, Č., de Visser, A., "Vliyanie serebra na galvanomagnitnye svoistva i energeticheskii spektr smeshannykh kristallov $(Bi_{1-x}Sb_x)_2Te_3$ ", Zhur. Exper. Teor. Fiziki, Vol. 117 (2000), pp. 1242-1250
- 5. Stordeur, M., Simon, G., "lnvestigation of the Weak-Field Charge Transport in Semiconducting V_2 -VI₃ Compounds with Trigonal Symmetry", Phys. Status Solidi (b), Vol. 124 (1984), pp. 799-806
- 6. Horák, J., Drašar, Č., Novotný, R., Karamazov, S., Lošťák, P., 'Non-Stoichiometry of the Crystal Lattice of Antimony Telluride", Phys. Status Solidi (a), Vol. 149 (1995), pp. 549-556
- 7. Dyck, J. S., Chen, W., Uher, C., Drašar, Č., Lošťák, P., "Heat Transport in $\mathrm{Sb}_{2-x}V_xTe_3$ Single Crystals", *Phys. Rev. B*, Vol. 66, (2002), pp. 125206-1 – 125206-6.
- 8. Callaway, J., "Model for Lattice Thermal Conductivity at Low Temperatures", Phys. Rev., Vol. 113 (1959), pp. 1046 -1051
- 9. Gultyaev P.V., Petrov A. V., "The Specific Heats of a Number of Semiconductors", Sov. Phys. Solid State. Vol. 1(1959) pp.330-34
- l0.Shoemake G. E., Rayne J. A., Ure R. W., "Specific Heat of n-and p-Type Bi_2Te_3 from 1.4 to 90°K", Phys. Rev., Vol. 185 (1969) pp.1046-1056
- ll.Klemens P. G., "The Scatiering of Low-Frequency Lattice Waves by Static Imperfections", Proc. Phys. Soc. London, Vol. A68 (1955) 1113-1128
- l2.Abeles B., "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures", Phys. Rev., Vol. 131 (1963) pp.1906-1911
- l3.Shannon R. D., "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides", Acta Crystallographica, Vol. A32 (1976) pp.751-767
- 14. Dyck, J. S., Hájek, P., Lošťák, P., Uher, C., "Diluted Magnetic Semiconductors Based on $\text{Sb}_{2-x}\text{V}_{x}\text{Te}_{3}$ $(0.01 \le x \le 0.03)$ ", *Phys. Rev. B*, Vol. 65 (2002), pp. 115212-115217.