THE EFFECT OF THE SUBSTRATE TWO-DIMENSIONAL TEMPERATURE DISTRIBUTION
ON THE TEC PERFORMANCE

[.A.Drabkin!, L.B. Yershova®, D.A. Kondratiev’, G.G. Gromov’
! Institute of Chemical Problems for Microelectronics
?RMT Ltd 53 Leninskij prosp., Moscow 119991 Russia
phone: +7-095-132-6817 fax: +7-095-132-5870
e-mail: rmtcom@dol.ru hitp://www.rmtlid.ru

Abstract

Temperature distribution on a thermoelectric cooler (TEC)
cold surface is of high practical value, as the size of the cooled
object may not coincide with the dimensions of the TEC cold
side and it is necessary to make the object temperature closer
to the average cold substrate temperature. It is also very
important to take into account the temperature distribution on
the intermediate substrates of multistage TECs both in
mathematical simulation and design modeling,

An approach to finding the approximate two-dimensional
temperature distribution for the case of a heat source located
on the surface has been developed in papers [1,2]. The results
of quite a detailed model of the heat spread in the TEC
substrates was considered for certain specific tasks in paper
[3] but this model infinite series solution is hard to apply to
independent problems. In this paper the method [1,2] is
applied to calculations of the temperature 2D-profiles of the
TEC substrates. The application of the above-mentioned
method for performance improvement of TEC systems is
discussed. The analytical form of the solution is open for a
wide application.

Two-Dimensional Temperature Distribution on the Cold
Substrate of a Single-Stage TEC

Consider a problem of the temperature distribution on the
cold substrate surface of a single-stage TEC. Assume it
consists of N pellets. A heat source is localized on the TEC

cold side.
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Figure 1. Schematic view of a rectangular heat source on a

single-stage TEC cold substrate surface

Suppose the TEC substrate is an L; x L, rectangular, and
the heat source is a 2AL; x 2AE, one. The heat source centre
coordinates are &;, &. The heat source load to be pumped by
the TEC equals Qp. The hot surface temperature is a fixed
value T;, and the cold surface temperature is a two-
dimensional function T.(x,,x;). Hereinafter, not to take into
account discreteness of pellets on the substrate surface, we do
not restrict each pellet cooled (heated) area to the peliet cross-
section sg, but regard it as the full substrate area per a pellet —
L,Lo/N. That is, we assume a quasi-continuous pellets
distribution on the substrate surface. Within this approach the
calculated temperature two-dimensional field differs from the
real one in lacking a slight periodicity (its period equals the
distance between pellets). Then the pellets 2D-distribution
density is equal to N/LL,. Ignoring thermoelectric parameters
dependence on temperature, we consider the Seebeck
coefficient o, thermal conductivity x and electrical resistivity
p to be constant values. When the pellet is exposed to the
electrical current I, the heat flux g [3] is pumped to the

pellet cold end:
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where the first term on the right side of equation (1) expresses
the Peltier heat extracted by the pellet from the substrate, the
second term is the part of the Joule heat, arriving at the
substrate from the pellet, and the third term describes the heat
flux coming from the hot subsirate by the pellet thermal
conductance. Here o — the Seebeck coefficient, R=pl/sy —
pellet electrical resistance, k=xsy/l — pellet thermal
conductance, | — pellet length. Let d denote the substrate
thickness and ) stand for the substrate thermal conductivity.
Then the heat conductance equation can be written as follows:

2 2
m[a chﬂd(a Tc}_N(ocuk)rc .

ax? ox? LiL,
1., @
N 5 R +KT, )
+ » Qolwy
L,L, 445,48,

where we write the symbol 1{u} for the function equal 1
within the area of the heat source Q and 0 within the rest of
the surface.

Suppose the heat is only absorbed from the cold substrate
by the pellets and there are no lateral heat fluxes:



oL =0, i=12. (3)

i xj=0,x;=L;

If turning the current I into the reduced current j=H/s, and
denoting the pellets filling coefficient K¢
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Making in Eq. (2) the substitution of variables:
A
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we obtain the following equation:
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with boundary conditions:
@ =0, i=12 (10)
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The approximate solution of this problem is known and
given in papers [1,2]:
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the functions ¢ look as follows:
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where
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Therefore, the temperature distribution for the case in Fig.
1 is yielded by the expression:
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where S, — the area covered by the heat source.

Two-Dimensional Temperature Distribution on the
Intermediate Substrate of a Two-Stage TEC

Consider a two-stage TEC. Let the first (upper) stage
{cascade) cover the area 2AE;x2AE; and consist of N, pellets.
The heat load delivered onto the first stage is qo. Let the
second stage cover the area L, x L, and have N, pellets. Not to
be concemed about the type of electrical connection we
suppose power is supplied to the cascades independently, so
that we can be free to choose the pellets geometry of each
cascade. Thus we denote the pellets cross-secticn s; and the
pellets height };, where indices i=1,2 correspond to the stage
number. The values of the thermoelectric parameters are also
taken different per stage and further are distinguished by the
stage index. The reduced current values for the two stages can
also differ and we denote them j;, i = 1,2. Qur objective is to
obtain the temperature distribution T.(x,y) on the substrate
between the first and the second cascade.
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Figure 2. Schematic view of geometry and temperatures on
the cascades of a two-stage TEC

Unfortunately, the solution [1] was obtained for the
uniform heat load on the cocled substrate. Therefore, the
solution is approximate and assumes that the heat flux from

the first stage to the second one is evenly spread over their



contact area. We also suggest the heat load on the upper stage
be uniform as well and the pellets of both cascades be
arranged quasi-continuously, as we supposed in the single-
stage problem. Let us write Q, for the heat flux from the first
stage. It can be expressed as follows:
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Here T. is the average temperature of the contact area
between the two stages:
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Analogous heat rate equations for the first stage cold
substrate allows eliminating the temperature T, from Eq. (17):
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Therefore, we come to the equation similar to Eq. (2). Its
solution is given by the following expression:
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where the functions ¢, and ¢, are determined by Eqs. (12) -
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(15), and the other terms are given below:
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As a result of these transformations the value Tc remains
unknown. It can be found by a multi-iteration procedure. For a

Zero approximation we take Te as a solution of linear
equations of the heat balance on the TEC substrate in the 1D-
approach:
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After the temperature distribution is found in the first
iteration, we can carry out the integration over the thermal
contact area and calculate Tc. As the solution of the heat
conduction equation is expressed in the analytical form, the
corresponding integrals are easily calculated. If denoting
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the expression for Te can be written as follows:
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With the help of Eq. (27) we can find the value Te,
calculate a new value of ¢ from Eq. (21) and, with it, find a

new Tc , and etc. The procedure described above converges
quickly and only a few iterations are required.
Due to the temperature losses the average femperature of

the thermal contact area Tc is different from the average

temperature of the whole intermediate substrate Tu:
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where we write £; for the following:
Gi = Jpbs (0)dx = 24, , =12, (29)

Eq. (29), taken into account Eq. (28), coincides with Eq.
(24), i.e. the temperature (24), used in the first iteration, is
exactly the average over the substrate area. If the difference

between Lcand Tq is slight, one iteration may be enough.

Numeric Calculations Results

The above formulae allow calculating the temperature
distribution over the substrates of a single-stage and multistage
TEC. In fact, to perform this calculation it is sufficient to be
capable of finding the temperature distribution on the cold
substrate of a single-stage TEC (see (16)), as evaluating the
operational heat load on a TEC stage is a standard task of a
TEC mathematical simulation.

Eq. (28) may be applied not only to a two-stage TEC, but
also to a second stage of a multicascade TEC. For this purpose
one has to know, at least approximately, the temperature of the
second stage hot substrate. Once the heat rejected by the
previous cascades is found, it is possible to calculate the
temperature distribution on any stage cold substrate of a
multicascade TEC with the help of Eq. (28).

In practice it is often more important to obtain the average

temperature | of the substrate and the average temperature

Tqof the contact area under the heat load rather than the
temperature two-dimensional field on the substrate surface. As
an appropriate criterion of the distributional uniformity we

take the difference AT:TC[ —T. The analytical form of the



heat conductance equation allows finding it easily. Thus we
come to the following equation for a single-stage TEC:
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and for a two-stage TEC we have a similarly structured
formula:

AT» =Biz(<P1(Pz —4AEAL,) €10

In Table 1 we give the results of AT calculation for
various kinds of heat sources localized on the cold side of the
standard 127-couple 40x40 mm® TEC (1.15x1.4x1.4 mm’
pellets) for different materials of the cold substrate. The hot
substrate temperature is taken 300 K. The reduced electric
current is /=20 A/cm ([=3.4A). The heat source is placed in
the centre of the cold substrate (£,=20mm, &,=20mm),

The data in Table 1 indicate that the localized heat load
with the heat density 10 W/em® is poorly spread over the
substrate of Al,Os. In this case even the AIN ceramics is not
sufficient. Only a 2 mm thick copper substrate allows reducing
temperature losses to the extent of the calculation errors (on
the order of 1 K).

Table 1. Temperature difference AT between the
temperature averaged over the heat source area and that
averaged over the whole substrate for the standard 127-
couple 40x40 mm’ TEC and various heat sources

LR o Y- 2 | g2f
= - ® 5 = .S | =82 —
= §° 3% |22 |FE |
E | ©
1] 10 10x10 1 ALO; | 30 37.6
2] 10 10x10 1 AN | 170 7.6
3] 10 20x20 1 ALO; 30 12.6 |
4] 10 20x20 1 AIN 170 3.1
5|10 30x30 1 ALO, 30 29
6 10 10x10 i Cu 400 29
70 10 10x10 2 Cu 400 1.3

Fig. 3 illustrates the temperature distribution fields for
cases 1, 2, 6.

In Fig. 4 we summarize the above results by the picture of
2D-fields sections of cases 1 (a), 2 (b), 6 (c) of Table 1. The
sections cut the topographic forms across the centre along the
abscissa axis. The shaded area denotes the dimensions of the
heat source (10 mm).
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Figure 3. 2D-temperature fields for cases I {aj, 2 (b), 6 (c} of
Table |
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Figure 4. 2D-temperature fields central sections for cases
1,2, 6 of Table 1



Another advantage of the method developed here is that it
is not restricted to centre-symmetrical problems. Fig. 5 gives
an example of the 2D-temperature field for situation # 2 of
Table 1 in case the rectangular heat source 20x5 mm’ is

shifted from the centre {€,=20 mm, £;,=10 mm).

Figure 5. Example of 2D-temperature field for non-central
localization of the rectangular heat source; heat source 10 W,
area 2AEx2AE=20x5 mm’. Centre &=20mm, &=10mm;

substrate - case #2 of Table 1. T =104 K.

Now we investigate the problem of two-dimensional
temperature losses on the intermediate substrate in two-stage
TECs. Here we study how these losses are effected with the
intercascade thermal resistance, varying the following aspects:
1) the ratio N;/N;; 2) intermediate substrate thickness and/or
material. As carlier, the TEC hot side temperature equals
300K. We assume that the TEC heat load on the top stage is
zero: go=0.

Let us examine the first aspect. We consider two TECs
groups differing in heat density and dimensions. Each group
consists of 3 TECs. The TECs bottom stage sizes expanded
and the ratio No/N, growing, the critericn AT behavior is
studied.

The TECs are based on the Al,O; ceramics (thermal
conductivity is 30 W/mK).

Table 2 gives the results for two-stage TECs of group 1.
The top cascade area and its pellets number N; are kept
constant. The bottom stage pellets number N2 is varied. The
pellets height is 1.5 mm, their cross-section is 0.6x0.6 mm?.
The ceramics is (.5 mm thick. The electric current is 0.8 A
(MO-SImax)-

Table 2. The parameters and the difference AT for the
intermediate substrate of two-cascade TECs (group 1)

We see that miniature TECs provide comparatively small
temperature losses on the intermediate substrate. The criterion
AT tends to grow with the ratio N/N,.

The second case is much more thermally strenuous. Table
3 presents data similar to those of Table 2 for the two-stage
TECs of group 2. The pellets height is 1.0 mm, their cross-
section is 1.0x1.0 mm?. The ceramics is 1.0 mm thick. The
electric current is 3.0 A (~0.81,.).

Table 3. The parameters and the criterion AT for the
intermediate substrate of two-cascade TECs (group 2}

2AE:x | Heat | __

TI;C XZAgzz, L:;‘;z, Ny | Ny [No/Ny %3, :i;l;:::l);: A[;r |
mm | [

1 | 9x9 [I5x18/36 |114] 32 [3.77 457 |54 |

9x0 |18x21)36 [162 45 |3.69 4.56 | 7.2 |

3 | ox9 [21x24)36 [218] 6.1 [3.66 452 |87 |

rEC| 286% | | ST [P
1 | 4x4 | 8x8 | 16| 62| 39 |044] 275 | 15
2 | 4x4 10x10| 16 | 98 | 6.1 |0.43| 2.69 | 22
"3 | ax4 12x12 16 |142] 89 042] 263 | 28

Table 3 shows that even for quite a moderate value of the

ratio No/N; (#1) the criterion AT is rather high. The situation
is only worse for cases # 2 and 3. Fig. 6 gives the comparative

picture of AT versus the ratio No/N for the two groups.
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Figure 6. The criterion AT vs the ratio Ny'N, for TECs of
groups I and 2.

The intermediate substrates of the group 2 TECs are not
substantially thick or their material thermal conductivity is not
enough. As a result, the thermal resistance between the pellet
on the edge of the substrate and the heat load becomes too
high and the peripheral pellets in the bottom stage are not
involved in cooling, unreasonably consuming additional
power.

Thus, let us consider the second aspect. We take TEC # 1
of group 2 for the same electric current as in Table 2 and,
varying the thickness and material of the intermediate

substrate, study the criterion AT . The results obtained are
given in Table 4.



Table 4. The parameters and the criterion AT of the two-
cascade TEC (group 2, #1) based on intermediate substrates
of different thermal resistance

Intermediate Ceramics Substrate

Substrate Thermal . =

Ceramics | Conductivity, Thllcnk;ess, Q, WIAT, K

Material WimK
Al Os 30 0.5 391 97
AlLO, . 30 1.0 |3.77 | 5.4
AlLO; 30 2.0 369 28
AIN 170 0.5 366 | 19
AIN | 170 . 1.0 2.63 | 0.9
BeQ I 260 | 0.5 263 | 12

We see that for the case #1 of Table 3 alumina
intermediate substrate can only be acceptable if it is thicker
than 2mm. The similar result has been pointed out in paper’.
Aluminum Nitride ceramics can reduce temperature losses to
the level of calculation accuracy if the substrate is 0.5-1.0 mm
thick; Beryllium Oxide does for a 0.5 mm thick substrate.

Conclusions

In TEC design and manufacturing a theoretical modeling
should be of great reliability. Nowadays it is no problem to
carry out one-dimensional computation and evaluate both
specification and operation TEC parameters.

This paper proves that sometimes one-dimensional
assessments are not sufficient. It occurs when a TEC is
required to perform intense heat pumping in case of a forced
geometrical compromise between concentration and dispersion
of the heat flow. Then a detailed two-dimensional problem is

to be solved and the criterion AT should be taken into
account.

The paper offers a thermoelectricist an open-to-use
convenient analytical method for finding such 2D solutions.

As illustrations of the method efficiency, the analyses of
two-dimensional temperature losses in single-stage TECs with
localized heat sources and in two-stage TECs on the
intermediate substrates are given.

The method is recommended for application-design
optimization of TECs.
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