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Abstract
Temperatwe distribution on a thermoelectric cooler (TEC)

cold surface is ofhigh practical value, as the size ofthe cooled
object may not coincide with the dimensions of the TEC cold
side and it is necessary to make the object temperature closer
to the average cold substrate temperature. It is also very
important to take into account the temperatue distribution on
the intermediate substrates of multistage TECs both in
mathematical simulation and design modeling.

An approach to finding the approximate two-dimensional
temperature distribution for the case of a heat source located
on the surface has been developed in papers [,2]. The results
of quite a detailed model of the heat spread in the TEC
subsfates was considered for certain specific tasks in paper
[3] but this model infinite series solution is hard to apply to
independent problems. In this paper the method [1,2] is
applied to calculations of the temperature 2D-profiles of the
TEC substrates. The application of the above-mentioned
method for performance improvement of TEC systems is
discussed. The analyical form of the solution is open for a
wide application.

Two-Dimensional Temperature Distribution on the Cold
Substrate of a Single-Stage TEC

Consider a problem of the temperatue distribution on the
cold substrate surface of a single-stage TEC. Assume it
consists of N pellets. A heat source is localized on the TEC
cold side.

Suppose the TEC substrate is an L1 x L2 rectangular, and
the heat source is a 2A(1 x 2Ll2 orj,e. The heat source centre
coordinates are {1, (r. The heat souce load to be pumped by
the TEC equals Qo. The hot surface temperature is a fixed
value T1, and the cold surface temperatue is a two-
dimensional function T"(x1,x2). Hereinafter, not to take into
account discreteness of pellets on the substrate surface, we do
not restrict each pellet cooled (heated) area to the pellet cross-
section so, but regard it as the full subshate area per a pellet -
LrLzN. That is, we assume a quasi-continuous pellets
distribution on the substrate surface. Within this approach the
calculated temperature two-dimensional field differs from the
real one in lacking a slight periodicity (its period equals the
distance between pellets). Then the pellets 2D-distribution
density is equal to N/L1L2. Ignoring thermoelectric parameters
dependence on temperature, we consider the Seebeck
coefficient d, thermal conductivity r and electrical resistivity
p to be constant values. When the pellet is exposed to the
electrical current I, the h€at flux q0.1", [3] is pumped to the

pellet cold end:
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where the first term on the right side of equation (1) expresses
the Peltier heat extracted by the pellet ftom the substrate, the
second term is the part of the Joule heat, aniving at the
substrate from the pellet, and the third term describes the heat
flux coming from the hot subsfiate by the pellet thermal
conductance. Here o - the Seebeck coefficient, R=plls6 -
pellet electrical resistance, k=rcso/l - pellet thermal
conductance, I - pellet length. Let d denote the substrate
thickness and l" stand for the substrate thermal conductivity.
Then the heat conductance equation can be rritten as follows:
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Figwe 7. Schematic vian ofa rectangular heat source on a
single-stage TEC cold substrate surface
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where we write the slmbol I {u} for the function equal I
within the area of the heat sowce Q0 and 0 within the rest of
the surface.

Suppose the heat is only absorbed from the cold substnte
bv the Dellets and there are no lateml heat fluxes:
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Making in Eq. (2) the substitution ofvariables:
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we obtain the following equation:
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the functions @ look as follows:
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Therefore, the temperature distribution for the case in Fig.
1 is yielded by the expression:
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If tuming the current I into the reduced curentj:lvs0
denoting the pellets filling coeflicient K6
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we define:
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(6) where Sq - the area covered by the heat source.

Two-Dimensional Temperature Distribution on th€
Intermediate Substrate of a Two-Stage TEC

(j\ Consider a two-slage TEC. Let the first (upper) stage
(cascade) cover the area 2A(1x2A(, and consisl of N1 pellets.
The heat load delivered onto the first stage is qe. Let the
second stage cover the area Lq x L2 and have N2 pellets. Not to
be concemed about the rype of eleckical connection we

(E) 
suppose power is supplied to the cascades independently. so
that we can be free to choose the pellets geometry of each
cascade. Thus we denote the pellets cross-section si and the
pellets height 11, where indices i=1,2 correspond to the stage

(9) number. The values of the thermoelectric parameters are also
taken different per stage and further are distinguished by the
stage index. The reduced current values for the two stages can
also differ and we denote them j;, i : 1,2. Our objective is to

rt0) obtain the temperature distribution T.(x.y) on the subsrate
between lhe firsl and the second cascade.
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Figare 2. Schematic view of geometry and temperatures on
the cascades ofa two-stage TEC

Unforhmately, the solution Il was obtained for the
miform heat load on the cooled substrate. Therefore. the
solution is approximate and assumes that the heat flux fiom
the first stage to the second one is evenly spread over their
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The approximate solution of this problem is known and
given in papers [,2]:

fr ,ct(p,x,).  *;  .  [o;E; -AEiJ

I r,cl(p'x '  )-  ctr(p,(x'  -  ( '  + a(, ))+ t.I
O,  = j  x1 e [ - f ;  ,A( ; , { ;  +A{11

l rc '"n(p'" ' )-  "t ' (p,(r '  -{ '  + l( ' ))r
| .+ch(p i (x i  -€ ;  -A€ i ) ,1 ,  x i  €  [€ i  +AEi . l l



contact area. We also suggest the heat load on the upper stage
be uniform as well and the pellets of both cascades be
arranged quasi-continuously, as we supposed in the single-
stage problem. Let us write Q0 for the heat flux from the first
slage. It can be expressed as follows:
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Here T" is the average temperature of the contact area
between the two stages:
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Analogous heat rate equations for the first stage cold
substrate allows eliminating the temperature Tn ffom Eq. (17):
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Therefore, we come to the equation similar to Eq. (2). Its
solution is given by the following expression:
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where the functions $, and$, are determined by Eqs. (12) -

(15), and the other terms are given below:
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As a result of these transformations the value Tc remains
unknown. It can be found by a multi-iteration procedure. For a

zero approximation we take T" * u solution of linear
equations of the heat balance on the TEC substrate in the lD-
approach:
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After the temperatue distribution is found in the first
iteration, we can carry out the integration over tie thermal

contact area and calculateTc. As the solution of the heat
conduction equation is expressed in the analytical form, the
corresponding integrals are easily calculated- If denoting

(28)
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the expression for Tc can be written as follows:
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With the help of Eq. (27) we can find the value T..

calculate a new value of c from Eq. (21) and, with it, find a

new Tc, and etc. The procedure described above converges
quickly and only a few iterations are requfued.

Due to the temperature losses the average temperatue of

the thermal contact area Tc is different from the average

temperalure ofthe whole intermediate substrate Tct:
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where we wite (, for the following:

(r  = l j0r(x)clx -  z lE i ,  i :1,2. (2e)
Eq. (29), taken into account Eq. (28), coincides with Eq.

(24), i.e. the temperature (24), used in the first iteration, is
exactly the average over the substrate area. If the difference

between Tc and Tct is slight, one iteration may be enough.

Numeric Calculations Results
The above formulae allow calculating the temperature

distribution over the substrates of a single-stage and multistage
TEC. ln fact, to perform this calculation it is sufficient to be
capable of finding the temperature distribution on t}le cold
substrate of a single-stage TEC (see (16)), as evaluating the
operational heat load on a TEC stage is a standard task of a
TEC mathematical simulation.

Eq. (28) may be applied not only to a two-stage TEC, but
also to a second stage ofa multicascade TEC. For this purpose
one has to know, at least approximately, the temperatue ofthe
second stage hot substrate. Once the heat rejected by the
previous cascades is found, it is possible to calculate the
temperature distdbution on any stage cold substrate of a
multicascade TEC with the help ofEq. (28).

In practice it is often more important to obtain the average

temperature T of the subshate and the average temperature

Tq of the contact area under the heat load rather than the
temperature two-dimensional field on the substrate surface. As
an appropriate criterion of the distributional uniformity we

take the difference AT=Tq -T. The analltical form of the

(2s)



heat conductance equation allows finding it easily. Thus we
come to the following equation for a single-stage TEC:

(30)

and for a two-stage TEC we have a similarly structured
lormula:

ATr = .  (ar9z -4A€rAqr)
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In Table 1 we give the results of AT calculation for
various kinds of heat sources localized on the cold side ofthe
stardard 127-couple 40x40 mm2 TEC (1.15x1.4x1.4 mm3
pellets) for different materials of the cold substrate. The hot
subshate temperature is taken 300 K. The reduced electric
curent is j:20 AJcm (I:3.4A). The heat source is placed in
the centre of the cold substrate ({1:20mrn, e2=20nnn)

The data in Table I indicate that the localized heat load
with the heat density 10 Wcm2 is poorly spread over the
substrate of Al2Or. In this case even the AIN ceramics is not
sufficient. Only a 2 mm thick copper substrate allows reducing
temperature losses to the extent of the calculation errors (on
the order of I K).

Table l. Temperqture diference A,T between the
temperqture weraged over the heat source area and thqt
averaged wer the whole substrate for the standard 127-

Fig. 3 illusfates the temperatue distribution fields for
cases l. 2. 6.

ln Fig. 4 we summaxize the above results by the picture of
2D-fields sections of cases I (a),2 (b),6 (c) of Table l. The
sections cut the topographic forms across the centre along the
abscissa axis. The shaded area denotes the dimensions of the
heat souce (10 mm).

c) I mm Cu substrate; heat density l0 w/cm'� (#6)
Fi.gtre 3. 2Dtemperaturefelds for cases I (a), 2 (b), 6 (c) of

Tqble I
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Figure 4. 2D-temperature fields central sections for cases
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AT,
K

I 1 0 l0x l0 I Al2o3 30 37 .6
2 1 0 10x10 I AIN 170 7.6
3 1 0 20x20 I A12o3 30 t2.6
4 l 0 20x20 I AIN 170 3 . 1
5 l 0 3 0x30 I A12o3 30 2.9
6 l 0 10x l0 I Cu 400 2.9
7 l 0 10x 10 2 Cu 400 1 . 3



Another advantage of the method developed here is that it
is not restuicted to cenhe-symmetrical problems. Fig. 5 gives
an example of the 2D-temperature field for situation # 2 of
Table I in case the rectangular heat source 20x5 rnm2 is
shifted liom the centre ([1:20 mm, (r:10 mm).

Figure 5. Example of 2D-temperature fieldfor non-central
localization ofthe rectqngular heat source; heat source 10 W,
area 2A{62A{2=20x5 mm2. Centre (1:20mm, f2:l\mm;
substrqte - case #2 ofTable 1. I :10.4 K.

Now we investigate the problem of two-dimensional
temperature losses on the intermediate substrate in two-stage
TECs. Here we study how these losses are effected with the
intercascade thermal resistance, varying the following aspects:
l) the ratio NzA{r; 2) intermediate substrate thickness and,/or
material. As earlier, the TEC hot side temperatue equals
300K. We assume that the TEC heat load on the top stage is
Zero: qo:o.

Let us examine the first aspect. We consider two TECs
groups differing in heat density and dimensions. Each group
consists of 3 TECs. The TECs bottom stage sizes expanded
and the ratio N2,4.11 growing. the criterion AT behavior is
studied.

The TECs are based on the Al2O3 ceramics (thermal
conductivity is 30 WmK).

Table 2 gives the results for two-stage TECS of group l.
The top cascade area and its pellets number Nr are kept
constant. The bottom stage pellets number N2 is varied. The
pellets height is 1.5 mm. their cross-section is 0.6x0.6 mm2.
The ceramics is 0.5 mm thick. The electric current is 0.8 A
(-0.8r*,.).

-lable 
2. The parameters and lhe difference LT for the

intermediate substrale oJ two-cascade TECs (group l)

IEC
2Ll1x
x2L\2,
mmt

LlrL2,
mm Nr N2 Nr/Nr Qo'

w

Heat
density,
Wcm2

A T ,
K

1 4x4 8x8 l o 62 3.9 0.44 2.75 1 . 5
2 4x4 1 0 x 1 0t o 98 6 . 1 0.43 2.69 2.2
3 4x4 l2xl2 1 6 142 8.9 0.42 2.63 2.8

We see that miniature TECs provide comparatively small
temperature losses on the intermediate substrate. The criterion

AT tends to grow with the ratio N2/Nr.
The second case is much more thermally strenuous. Table

3 presents data similar to those of Table 2 for the two-stage
TECs of group 2. The- pellets height is 1.0 mm, their cross-
section is 1.0x1.0 mm'. The ceramics is 1.0 mm thick. The
electric current is 3.0 A (-0.81.*).

Table 3. The pdrameters qnd the criterion LT for the
s ubstr ate of tw o- c as c ade TEC s

TEC 2L\1x
x2L\2,
mm'

LrxL2,
mm

N1 N2 Nz/f.{r Qo,
w

Heat
density
Wcm2

AT
K

1 9x9 l 5 x l 8 3 6 I  l 4 3.2 3.7 i 4.57 5.4
2 9x9 l8x2l 3 6 162 4.5 3.69 4.56 7.2
3 9x9 z tx24 J O 2t8 6 . 1 3.6( 4.52 8.7

intermediqte

Table 3 shows that even for quite a moderate value ofthe
ratio N2A.l1 (#l) the criterion AT is rather high. The situation
is only worse for cases # 2 and 3. Fig. 6 gives the comparative
picture of AT versus the ratio N2,Nr for the two groups.

--.o-Gq..p 2

-*:-GorP 1

6
Nr/Nz

Figure 6. The criterion LT vs the ratio N/Nrfor TECs of
groups I and 2.

The intermediate substrates of the group 2 TECs are not
substantially thick or their matedal thermal conductivity is not
enough. As a result, the thermal resistance between the pellet
on the edge of the substate and the heat load becomes too
high and the peripheral pellets in the bottom stage are not
involved in cooling, unreasonably consuming additional
power.

Thus, let us consider the second aspect. We take TEC # I
of group 2 for the same electric current as in Table 2 and,
varying the thickness and material of the intermediate
substrate, study the criterion AT. fne results obtained are
eiven in Table 4.
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Table 4. The parameters qnd the cfiterion LT ofthe two-
cascqde TEC (group 2, #1) based on intermediqte substrqtes

thermal resistance

Intermediate
Substrate
Ceramics
Material

Ceramics
Thermal

Conductivity,
w/mK

Substrate
Thickn€ss,

mm
Qo'W AT, I i

Alros 30 0.5 3 . 9 1 9 ; 7
A1203 30 1.0 3.77 5.4
Al2o3 30 2.0 3.69 2.8
AIN 170 0.5 3.66 1 . 9
AIN 170 1 .0 0.9
BeO 260 0.5 2.63 t . 2

We see that for the case #1 of Table 3 alumina
intermediate substrate can only be acceptable if it is thicker
than 2mm. The similar result has been pointed out in papel.
Aluminum Nitride ceramics can reduce temperature losses to
the level ofcalculation accuracy if the substrate is 0.5-1.0 mm
thick; Beryllium Oxide does for a 0.5 mm thick substrate.

Conclusions
In TEC design and manufacturing a theoretical modeling

should be of great reliability. Nowadays it is no problem to
carry out one-dimensional computation and evaluate both
specification and operation TEC parameters.

This paper proves that sometimes one-dimensional
assessments are not suflicient. It occurs when a TEC is
required to perform intense heat pumping in case of a forced
geometrical compromise between concentration and dispe$ion
of the heat flow. Then a detailed two-dimensional problem is

to be solved and the criterion AT should be taken into
account.

The paper offers a thermoelectricist an open-to-use
convenient anal).tical method for finding such 2D solutions.

As illusfations of the method efficiency, the analyses of
two-dimensional temperatwe losses in single-stage TECS with
localized heat sources and in hvo-stage TECs on the
intermediate substrates are given.

The method is recommended for application-design
optimization of TECS.
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