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Abstracts
The Harman method is commonly used to determine

thermoelectric properties of various materials. The main
difnculty in applying the method is accounting for corrections
related to electrical and thermal conductance of both cunent
wires and probe wires, and to radiant losses from wires and
from the sample. The pap;r cor.:ains solution ofthe set of one-
dimension thermal conductivity equations describing thermal
conditions in the sample and in the wires. On the basis ofthis
solution the calculation of the sample thermoelectric
properties made. In the original Harman method the current
and probe wires thermal conductance is much less than that of
the sample, minimizing adjustments for the thermal
conductance of the wires. It results in the electrical resistance
and Joule heat of the wires being greater than those of the
sample. Calculations make it clear that corrections related to
wires' Joule heat have a comparable value with the
adjustments related to the wir€s conductance.

Introduction
The Harman Method i-, used both for tests of

thermoelectric modules and for determination of
thermoelectric properties of materials [l, 2, 3]. This method is
especially suitable for acceptance tests of thermoelectric
cooling modules.

ln this paper we di;cuss Lhe basic requirements to the
Harman method for determination of thermoelectric properties
of materials. It is accepted that the current / flowing through
the sample with the Seebeck coemcient a and resistance &
must be of such value tlat the Peltier heat pp on the side with
tem.peratue f (Qr = <tIT) is far greater than the Joule heat Q7
= -l-(.. lhat ls whv

a T T
/ < < - = 1 . * ^  ,  ( l )

Kr t o.,n
where 1,- is optimal cunefi, To ,in is minimal temperature of
the cold side. It is clear that inequality (l) is easily fi]lfilled
and the temperature distribution along the sample is close to
linear.

In order to diminisir the influence of thermal
conductance ofthe wire leads &u on temperature pattern in the
sample, fu must be far less than the thermal conductance of
the sample ,t. . As the Wiedemarur-Franz law demands that

R, >> nR. , (2)
where,R- is resistance oi wire leads and n is some number in
within the limits of 0.2 - 0.4 for usual thermoelectric
materials. On the other hand, to achieve that the average
temperature ofthe sample 7"- be insignificantly differed from
the ambient temperature Zo it is necessary that the Joule heat
ofthe wire leads be far less than that ofthe samDle. i.e.

R, << R. (3)
As (2) and (3) can't be satisfied simultaneously we assume
that only inequality (2) is satisfied. In this case the sample is
heated by the Joule herit of wire leads and not by that of the
sample itsr lf. As a consequence the cunent value must be
much less than (l) and the estimations for it are:

k<(0.0s - 0.01)r_*. (4)
To satisry condition (4) is somewhat complicated in

practice. That is why the wire leads always affect the
measurement results and it is necessary to consider all factors
more strictly when using the Harman method.

Corrections to th€ Harman method in one-dimension
approach

Further we suppose that density of the current flow
through the sample has constant value and therefore we can
consider a one-dimension model. First of all we analyze the
case when the wire leads are placed on both sides of the
sample. For our consideration it is sufficient to use a 4-wires
case because a bigger number of probe wires can be
substituted by 4-wires with efficient values of thermal
parameters. The measuring curcuit can be seen on fig.l

Fig.l. The sample with current and probe wires.

The coordinate r belongs to the current wires and the sample,
the coordinate 6 - to the probe wires. The wires on both sides
of the sample have the same length and diameter. Further we
shall use syrnbols: a - the Seebeck coefficient, p -resistivity,

2 - thermal conductivity,Z, - length, d - diameter, a -heat
transfer coefficient, p - perimeter, 70 -temperature ofthe cold
side of the sample, I - temperatur€ of the hot side of the
sample. The lower index ofthe symbols explains to what these
symbols are related: s - the sample, w - the curent wle, lrp -

the probe viire.
In the area II and III (fig. l) the heat transfer equations are

r 2 r  , - r  t 2  ̂
s;* !-\! - a" p*(r*(x)- r.)+ !-zz =o . (5)

d:(' t-

^  d )T , " (€ )  t_  ,  ,  \
t * r t *  - ; ! -  q "pp"p \T" r \€ l -7 , )=0  .  (6 )

ln the area II it is
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The boundary conditions are:
r*(o)= r"(r. + zr")=.r,0(o\= r*(1. + zL*)=r".
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where C1 - Cro are constants of integrity, which are deduced
from boundary conditirns (8) <12). lt results in equations,
which can be solved in a numerical form. These equations are
given in Appendix l, where the following designations are
used:

a *  = a l  + a s s s ,  a -  = a I - a s s s ,

L,s*b,= p", ls,b,:f", L*+L"=L 1 2L*+ L":L,
o ̂  o...

R = ------r- - ------.:---L .
a"P,s" a.Pws"

Average temperature ofthe sample - equals:

-  I 2 o ^  2
'  -  

dspsJs  Lrb ,

(2s)
(26)

(27)

r, (t,) = r " (r ") = r", (t.)
r,"(L,, + L")=r"(1," + L")=r.p(L. + L,). 02)

These conditions arise from the equality oftemperature on the
extemal sides of the wires to ambient temperature and fiom
continuity of thermal fluxes and equality of temperatures on
the boundaries ofthe sample anJ wires.
In I and III areas in equation (5) the substitution of the
variable is made:

r 2  ̂
T* = s.(x)+ T'  +tu,

a"Pnsv

and in equation (6)
r*p = S"p\6)+7.

In area II in equation (7) substitution is used

I =s.'G)*4 + ' 's
4s Ps  Js

Then equations (5) - (7) take the form:

Temperature difference fbr both sides orrrr" ,u-pr" "qu!1r-1)

,t"= zcyr{or(t"*.*ll 'rf * *}-*t \  2 ) ) \ " 2 )
(  (  /  \ \  f  r  \

+ 2c 4shl bsl tw * ? 11"4 a, - l. (29\
\ \ ' ./) \ z J

In the similar way we can find temperature distribution along
the sample when two wires method (Fig.2) is used.

1,, {',(* . 1)), \', j). ", ",{*( r . +))"{^ +)l

0 L" Lt:L, + L"
Fig. 2. tieueral two wires circuit for the Harman method.

p"?,, ̂ ,p, ,,r, Probe rvl.e

- bls* = s, ' . lo,t"J[t* + 1,,1" + 21,f, 06)
" - b7o8* = 0,4 el l ,  L-IIL, + 1", L, + 2L*f,ol)

-b :s ,  =0,  , .1r . , , t ,  +  t " l , (18)

where the following designations are used:

P  -anPn  a t  - , "PP"P  P  -  ! : ! - y
r u b 1 _  1" lnsn "' tr"psnp l,r,

Solutions (16) (18) are searched in the
expressions:
in area x elo, L,)

,g* = C t sh(b* x) + c, ch(b*x),

t n  a rea  x  e l Lw ,  Lw  +  L . l

8 " = c 3sh(b " x) + c.,cn(t "x),
in area xe[2, + L,,L, + 2L*l

8, = c s sh(b,x) + c 6 ch(b, x\,

for probe wires in ar ea I elO, t*l
/ \ / \

8" n = C,s h\b.o{ )+ C 6c h\b.r( ).
t .  .  .  ^ .  t

ano In area q elL||  + L.. Lt + zLwl

8 " o 
= C u s h\b.o ( )+ C, uc h\b.r( ) ,
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(20)
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rro\ In this case the temperature distribution along the sample and
lhe wires has followins form:

T" =7o * 
Itp" 

* c t rsh(b"x)+ c t2ch\b,x), (30)
A"P,J,

T*  =7 .+  '  P*  +  c  t i sh(b*x )+  c  t f  h (b"  x ) ,  (31)
a,P.s.

T*o =7, +c,rsh(b,ox)+ c,ocn(t*ox),12t), (32)

where constants Ct, - C,u are found llom the numerical
solution ofthe linear system given in Appendix 2.

The average temperature ofthe sample is
_  1 2  ̂

7,  =r , "b+ . i (c  r  Fh\b,1, )  + c  t ,sh(b, / ,  ) -  4 .  (33)
arpsss L\os

and tle temperatue difference on the sample is

/r, = C r sh(b " L ") + c,,("n(u " t,) - t) . (34)



The Results of Numerical Calculations
The numerical calculations are made for a thermoelectric

material sample in the form of a parallelepiped with 4x4xl0
mrn3 dimensions. Length of the current and probe wires is 30
mm. Temperatue distribution along the current wires and the
sample is given in fig. 3. Calculations made for the sample
properties: tr, - i.4 WhK. o,: 1000 O''cm-'. o. = 200 pV/K.

z : 2.86 l0'3 K-r, l-,, = 7.3 A. Diameters of the current and
probe wires are the same - 0.1 mm. Ambient tempelatue is
293 K.

0 Lw L*+Ls 2Lw+Ls

Coordinate along the current wires and the sample

Fig. 3. Temperature distribution along the current wfues and
the sample for different currents flowing thrcugh the sample:
I - 0.1 A=0.014 l- ,2 - 0.2 4:0.027 Imax,3 -0.3 4:0.041
I.*, 4 - 0.4 A:0.055 I."-.

It is clear from fig. 3 that for usual curents the
temperatues both for the heat absorbing side and for the heat
emitting side are higher than the ambient temperature. The
reason of it is that the thermal fluxes caused by the Peltier heat
on both sides of the sample are smaller than thermal fluxes
from the current wfues.

We denote the sample voltage as U = Uo + U, .where

U o = aAT"and U, = IR" - The results of the calculation of

i", AT", Z* =Uo/{Jni" are given in Table l.

Table l� The dependence ofcalculated parameters on current

0 . 1 0.2 0.3 0.4 0.5 0.6

'f rr
t s , N

293.6 295.3 298.1 302.1 307 .2 3r3.7

AT". K 2.42 4.86 9.95 12.65 15.50
2"d0" 2.64 2.64 2.64 2.64 2.64 2.64

The processing of the experimental results is done in the
following way. In zero approximation it is accepted that lhe
value of the thermal conductivity is usual for the measured
sample. After it the set of equations given in Appendix I or 2
is solved and constants of integrity are found for different
sample emissivity. The value ofthe sample emissivity is taken
from the condition of equality of the average sample
temDeratures. which are calculated and obtained

This table shows that 2"11 is always smaller than Z of the
thermoelectric material and has weak dependence on the
sample current. Because of it a tansfer multiplier, which is
defrned for the given measwing cell can be used in wide
intervai of curent values. For example, in the considered case
the transfer multiplier is 1.087. This value is bigger than the
correcting multiplier due to thermal conductance of the wire
leads. This correcting multiplier, as it is easy to show, equals

- )"(s" + s*o )L,
| + ---:L--'::""""" eouals tor the considered case to I .047.

2Lj."s"

If the dimensions and parameters of the sample, and the
wires are defined and the current is given, then the average
temperature ofthe sample depends mainly on the emissivity of
the sample for the vacuum measurements. Under these
conditions the temperature difference between the opposite
sides ofthe sample is defined only by the thermal conductivity

of the sample. The dependence of AT on thermal
conductivity is clear fro:n fig. 4.

l , l5  1,20 1,25 1,30 1,35 1,40 1,45
Thermal conductivity, WmK

Fig. 4. The calculated dependence of the temperatur€
difference between the opposite sides ofthe sample.

The above-mentioned facts show how to process the
experimental results of the measurement made according to
the Harman method. l.{o doubt the new method is more
complicated than the usual Harman method because the
results of ZT measurements depend in a complex way on the
thermoelectric parameters. However, the algorithm of the
processing is simple enough and convenient. The sample
electrioal resistance is defured by measuring U. with altemate
current. It is evident that U. must be measured for the same
average temperature as it is done in measuring U". As the
sample heating is made mainly by the wires Joule heat the
change of altemate current to direct one with the same values
causes small change in the average temperature of the sample,
as it is shown by the calculations. The Seebeck coefficient is
defined from measurements in a different cell or in the same
cell, but with additional thermocouple wires connected to the
opposite sides ofthe sample (6-wires measuring circuit).

experimentally. The next step is dehning the new value of
thermal conductivity fiom the condition of equality of the

calculated and experimental values of AT. The new value of
thermal conductivity is used for calculation of the new value
of emi:,si''ity and so on. This procedure converges very
quickli so few approximations are sufficient.

It is clear that if the sample has inhomogeneities then the
measuring results may be distorted. The influence of

30

20

l 0

q  t l



tansverse inhomog€neities with characteristic dimensions
which are less than the sample length is discussed everywhere
[4] and it is known that such inhomogeneities lead to
diminishing the value of Z. Another t)?e of ihomogeneities
that can affect the value of Z is longitudinal inhomogeneity of
the charge carrier conc€ntration with characteristic dimensions
of order or larger than the sample length (for example,
ihomogeneites of the composition of the grown crystal). This
inhomogeneity leads to the longitudinal gradient of the
Seebeck coefficient and also to emission or absorption of the
Thomson heat depending on the direction ofthe current. Ifthis
gradient does not change the sign then the measued value AT
depends on the direction ofthe current. This gives dependence
of the measured Seebeck coefficient and Z on the curent
direction. If the gradient of the charge carriers changes the
sign then in case when the middle part of the sample has a
larger concentration of charge cariers than that on the sides
then the measured Z is larger than the real Z of every part of
the sample (because seeming gowth of electrical
conductance). In the opposite case the result of measuring the
value of Z is also opposite. Such influence of inhomogeneits
on measured properties must be taken into account and
manifestations ofit must not be left without attention.

Experimental Investigations
The measuring unit for Z ofthermoelectrics was designed

and calculating computer program was made up. The
measuring cell is given on fig. 5.

This cell can measure 3 samples simultaneously
Measurements were fulfilled in vacuum 2 - 3 IOl Torr. The
numerous measurements of thermoelectrics on the base Bi2Te3
was made with this unit. The emissivity for Bi6 5Sb1 5Te3 was
0.58 - 0.78 and for Bi2Te2 TSeq 3 - 0.55 - 0.70. 'l|l,e 

ratio 2/2"6
was 1.10010.005.

Fig.S. The measuring cell.

Conclusion
Modification of the Harman method proposed for

measuring Z ofthermoelectric materials, based on the solution
of thermal equation in one-dimension approximation. This
method makes it possible to consider the thermal emission of
the sample and thermal fluxes along the cunent and probe
wies. It has been shown that the Joule heat in curent wires
makes considerable contribution to the conection of the true
value of Z. The algorithm of processing of the experimental
results has also been proposed.
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