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Abstracts

The Harman method is commonly used to determine
thermoelectric properties of wvarious materials. The main
difficulty in applying the method is accounting for corrections
related to electrical and thermal conductance of both current
wires and probe wires, and to radiant losses frem wires and
from the sample. The pap.er cor-ains solution of the set of one-
dimension thermal conductivity equations describing thermal
conditions in the sample and in the wires, On the basis of this
solution the calculation of the sample thermoelectric
properties made. In the original Harman method the current
and probe wires thermal conductance is much less than that of
the sample, minimizing adjustments for the thermal
conductance of the wires. It results in the electrical resistance
and Joule heat of the wires being greater than those of the
sample. Calculations make it clear that corrections related to
wires’ Joule heat have a comparable value with the
adjustments related to the wires conductance.

Introduction
The Harman Method i. used both for tests of
thermoelectric  modules and for determination of

thermoelectric properties of materials {1, 2, 3]. This method is
especially suitable for acceptance tests of thermoelectric
cooling modules.

In this paper we discuss he basic requirements to the
Harman method for determination of thermoelectric properties
of materials, It is accepted that the current / flowing through
the sample with the Seebeck coefficient & and resistance R,
must be of such value that the Peltier heat (Jp on the side with
temzperature T(Or = a&lT) is far greater than the Joule heat Q;
= IR,. That is why

I<<£=IWHL, (1)
5 Tomin
where I, is optimal current, T ,.;,, is minimal temperature of
the cold side. It is clear that inequality (1) is easily fulfilled
and the temperature distribution along the sample is close to
linear.

In order to diminish the influence of thermal
conductance of the wire leads £, on temperature pattern in the
sample, k, must be far less than the thermal conductance of
the sample &, . As the Wiedemann-Franz law demands that

R, >>nR,, 2
where R, is resistance o wire leads and » is some number in
within the limits of 0,2 — 0,4 for usual thermoelectric
materials. On the other hand, to achieve that the average
temperature of the sample T, be insignificantly differed from
the ambient temperature 7, it is necessary that the Joule heat
of the wire leads be far less than that of the sample, i.e.

R, <<R, . (3)
As (2) and (3) can’t be satisfied simultaneously we assume
that only inequality (2) is satisfied. In this case the sample is
heated by the Joule heat of wire leads and not by that of the
sample its:1f. As a consequence the current value must be
much less than (1) and the estimations for it are:

I<<(0.05 - 0.01}],4 4

To satisfy condition (4) is somewhat complicated in

practice. That is why the wire leads always affect the
measurement results and it is decessary to consider all factors
more strictly when using the Harman method.

Corrections to the Harman method in one-dimension
approach

Further we suppose that density of the current flow
through the sample has constant value and therefore we can
consider a one-dimension model. First of all we analyze the
case when the wire leads are placed on both sides of the
sample. For our consideration it is sufficient to use a 4-wires
case because a bigger number of probe wires can be
substituted by 4-wires with efficient values of thermal
parameters. The measuring curcuit can be seen on fig. 1
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Fig.1. The sample with current and probe wires.

The coordinate x belongs to the current wires and the sample,
the coordinate ¢ - to the probe wires. The wires on both sides
of the sample have the same length and diameter. Further we
shall use symbols: @ - the Seebeck coefficient, p -resistivity,
A - thermal conductivity, L — length, d - diameter, a —heat
transfer coefficient, p — perimeter, T, —temperature of the cold
side of the sample, T — temperature of the hot side of the
sample. The lower index of the symbols explains to what these
symbols are related: s — the sample, w - the current wire, wp —
the probe wiire.

In the asea I and III (fig. 1) the heat transfer equations are
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swldez(‘x)_awa(Tw(x)_Ta)'F[A:O: (5)
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Swp twp ““d;T_awppwp(Twp (f)_Ta)=O . (6)

Inthe area Il it is



d’Ty(x) _

T—a.p_ | - —;;-—0. (7

The boundary conditions are:
T,@=r1,(L,+2L,)=7,0)=1,,(L+2L,)=1,. (8)

dr(L,) , . df(L,)_
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a]Ts(LW +L)—ASSS —dn(L;x+L“)+iwsw —dTW(L:x +L“)+
dar, Ly + L
gt Tl 0y 1)) 0.
(10)
T, (L,)=T(L,)=T\p{L,) an
Tw(Lw+Ls):Ts(Lw+Ls)=Twp(Lw+Ls)' (12)

These conditions arise from the equality of temperature on the
external sides of the wires to ambient temperature and from
continuity of thermal fluxes and equality of temperatures on
the boundaries of the sample and wires.
In I and III areas in equation (5) the substitution of the
variable is made:
72

T, =8,(x)+7, + —L, (13)

and in equation {6)

T, =‘9wp(‘§)+Ta : (14)
In area II in equation (7) substitution is used
I
T, = 9 (x)+ T, +—E5—. (15)

AgPsSg
Then equations (5) — (7) take the form:

9, -b28, =0, xelo.L, )L, + L L, +2L,], (16)
8, -bl9,,=0,£el.L,l[L, +L,.L,+2L,],07

wp
9" —v29,=0, xelL, . L, +L,], (18)
where the following designations are used:
aw W
pl=ule p2 LwPu 2 GiPs (19)
’?'wsw ’prswp ﬂ,sss

Solutions (16) — (18) are searched in the following
expressions:
in area xe[O,Lw]

3, =C;shib,x)+ C,chlb,x), (20)
inarea xe [Lw,Lw + LS]

9, =Cyshib,x)+ C chlb,x), 1)
in area xe[Lw + Lo, L, + 2Lw]

8, =Csshlb,x)+Cschlb,x), (22)
for probe wires in area £ € [0, Lw]

8,p = Cr5hlb, & )+ Caehlp,,€), 23)
and inarea £elL, + L, L, +2L,]

8,y = Cyshlb,, &)+ Crochlb,, &), 24)

where C, — C, are constants of integrity, which are deduced
from boundary conditions (8) —(12). It results in equations,
which can be solved in a numerical form. These equations are
given in Appendix 1, where the following designations are
used:

a* =al+agsg, @~ =al —agsg, (25)
ngwbw=ﬁw A'.sssb.r=ﬁrr LW+L.€=L.'1 2Lw+Ls=L, (26)
U - @7
a.i' psss aWpWSW
Average temperature of the sample T equals:
2
- I
T, =T, + Ps +L-
aspgss  Lgbg

LJ LS LS L.i‘
(28)

Temperature difference for both sides of the sample equals:

ATS = 2C3Ch(‘bs(LW+ + %J}Sh[bs E;'] +
+ 2C4Sh[bs(LW + %j]sh[bs LTSJ .

In the similar way we can find temperature distribution along
the sample when two wires method (Fig.2) is used.
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Fig. 2. General two wires circuit for the Harman method.

In this case the temperature distribution along the sample and
the wires has following form:

Izp
T, =T, +—1.C, shlb,x)+C,,ch(b,x),

(30)
aspsss
p,
T,=T, + +C,35h(b,x)+ C, kb, x), (31)
T,y =T, +C55hlbyyx)+ C ehlb,,x) 1), (32)

The average temperature of the sample is

_ 2
To=T,+Pi !

(Cu"'h(bslﬂs-)“' C.rzSh(bsLs)‘ ]) ,» (33)

and the temperature difference on the sample is

AT, =C pshlb L)+ C o {chlb, L)~ 1). (34)



The Results of Numerical Calculations

The numerical calculations are made for a thermoelectric
material sample in the form of a parallelepiped with 4x4x10
mm’ dimensions. Length of the current and probe wires is 30
mm. Temperature distribution along the current wires and the
sample is given in fig. 3. Calculations made for the sample
properties: A, = 1.4 W/mK, o, = 1000 'em, o, = 200 pV/K,
Z = 2.86 10° K, Iy = 7.3 A. Diameters of the current and
probe wires are the same - 0.1 mm. Ambient temperature is
293 K.
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Fig. 3. Temperature distribution along the current wires and
the sample for different currents flowing through the sample;
1 —0.1 A=0.014 I, 2 — 0.2 A=0.027 Imax,3 — 0.3 A=0.041
Lnaxs 4 — 0.4 A=0.055 L,,.

It is clear from fig. 3 that for usual curents the
temperatures both for the heat absorbing side and for the heat
emitting side are higher than the ambient temperature. The
reason of it is that the thermal fluxes caused by the Peltier heat
on both sides of the sample are smaller than thermal fluxes
from the current wires.

We denote the sample voltage as U =U, +U, ,where
U, =adT,and U, = IR, . The results of the calculation of
Ts, 4Ty, Zyp =U, /URES are given in Table 1.

Table 1. The dependence of calculated parameters on current

urrent,

Aol 02 lo3 |04 |05 |06
Para-
meter
T, K | 29362953 298.1 | 302.1 | 307.2 | 313.7
AT K |242 486 | 737 ]9.95 [12.65]15.50
Z.10°, | 264 | 264 [264 |264 [264 |2.64
K-l

The processing of the experimental results is done in the
following way. In zero approximation it is accepted that the
value of the thermal conductivity is usual for the measured
sample. After it the set of equations given in Appendix 1 or 2
is solved and constants of integrity are found for different
sample emissivity. The value of the sample emissivity is taken
from the condition of equality of the average sample
temperatures, which are calculated and obtained

This table shows that Z.y is always smaller than Z of the
thermoelectric material and has weak dependence on the
sample current. Because of it a transfer multiplier, which is
defined for the given measuring cell can be used in wide
intervai of current values. For example, in the considered case
the transfer multiplier is 1.087. This value is bigger than the
correcting multiplier due to thermal conductance of the wire
leads. This correcting multiplier, as it is easy to show, equals

A5y + 3y )L,

2L, A,

If the dimensions and parameters of the sample, and the
wires are defined and the current is given, then the average
temperature of the sample depends mainly on the emissivity of
the sample for the vacuum measurements. Under these
conditions the temperature difference between the opposite
sides of the sample is defined only by the thermal conductivity

equals for the considered case to 1.047.

of the sample. The dependence of AT on thermal
conductivity is clear from fig. 4.
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Fig. 4. The calculated dependence of the temperature
difference between the opposite sides of the sample.

The above-mentioned facts show how to process the
experimental results of the measurement made according to
the Harman method. Wo doubt the new method is more
complicated than the usual Harman method because the
results of ZT measurements depend in a complex way on the
thermoelectric parameters. However, the algorithm of the
processing is simple enough and convenient. The sample
electrical resistance is defined by measuring U, with alternate
current. It is evident that U, must be measured for the same
average temperature as it is done in measuring U,. As the
sample heating is made mainly by the wires Joule heat the
change of alternate current to direct one with the same values
causes small change in the average temperature of the sample,
as it is shown by the calculations. The Seebeck coefficient is
defined from measurements in a different cell or in the same
cell, but with additional thermocouple wires connected to the
opposite sides of the sample (6-wires measuring circuit).

experimentally. The next step is defining the new value of
thermal conductivity from the condition of equality of the
calculated and experimental values of AT. The new value of
thermal conductivity is used for calculation of the new value
of emissivity and so on. This procedure converges very
quickly so few approximations are sufficient.

It is clear that if the sample has inhomogeneities then the
measuring results may be distorted. The influence of



transverse inhomogeneities with characteristic dimensions
which are less than the sample length is discussed everywhere
[4] and it is known that such inhomogeneities lead to
diminishing the value of Z. Another type of ihomogeneities
that can affect the value of Z is longitudinal inhomogeneity of
the charge carrier concentration with characteristic dimensions
of order or larger than the sample length (for example,
ihomogeneites of the composition of the grown crystal). This
inhomogeneity leads to the longitudinal gradient of the
Seebeck coefficient and also to emission or absorption of the
Thomson heat depending on the direction of the current. If this
gradient does not change the sign then the measured value AT
depends on the direction of the current. This gives dependence
of the measured Seebeck coefficient and Z on the current
direction. If the gradient of the charge carriers changes the
sign then in case when the middle part of the sample has a
larger concentration of charge carriers than that on the sides
then the measured Z is larger than the real Z of every part of
the sample (because seeming growth of electrical
conductance). In the opposite case the result of measuring the
value of Z is also opposite. Such influence of inhomogeneits
on measured properties must be taken into account and
manifestations of it must not be left without attention.

Experimental Investigations

The measuring unit for Z of thermoelectrics was designed
and calculating computer program was made up. The
measuring cell is given on fig. 5.

This cell can measure 3 samples simultaneously
Measurements were fulfilled in vacuum 2 — 3 10 Torr. The
numerous measurements of thermoelectrics on the base Bi;Te;
was made with this unit. The emissivity for BigsSh; sTes was
0.58 — 0.78 and for Bi;Te; ,Seq3 — 0.55 —0.70. The ratio Z/7 ¢
was 1.10010.005.

Fig.5. The measuring cell.

Conclusion

Modification of the Harman method proposed for
measuring Z of thermoelectric materials, based on the solution
of thermal equation in one-dimension approximation. This
method makes it possible to consider the thermal emission of
the sample and thermal fluxes along the current and probe
wires, It has been shown that the Joule heat in current wires
makes considerable contribution to the correction of the true
value of Z. The algorithm of processing of the experimental
results has also been proposed.
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Appendix 1
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